Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 18 of 18 matches in All Departments
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
RNA technologies are the driving forces of modern medicine and biotechnology. They combine the fields of biochemistry, chemistry, molecular biology, cell biology, physics, nanotechnology and bioinformatics. The combination of these topics is set to revolutionize the medicine of tomorrow. After more than 15 years of extensive research in the field of RNA technologies, the first therapeutics are ready to reach the first patients. Thus we are witnessing the birth of a very exciting time in the development of molecular medicine, which will be based on the methods of RNA technologies. This volume is the first of a series. It covers various aspects of RNA interference and microRNAs, although antisense RNA applications, hammerhead ribozyme structure and function as well as non-coding RNAs are also discussed. The authors are internationally highly respected experts in the field of RNA technologies.
This volume contains 29 engrossing chapters contributed by worldwide, leading research groups in the field of chemical biology. Topics include pre-biology; the establishment of the genetic code; isomerization of RNA; damage of nucleobases in RNA; the dynamic structure of nucleic acids and their analogs in DNA replication, extra- and intra-cellular transport; molecular crowding by the use of ionic liquids; new technologies enabling the modification of gene expression via editing of therapeutic genes; the use of riboswitches; the modification of mRNA cap regions; new approaches to detect appropriately modified RNAs with EPR spectroscopy and the use of parallel and high-throughput techniques for the analysis of the structure and new functions of nucleic acids. This volume discusses how chemistry can add new frontiers to the field of nucleic acids in molecular medicine, biotechnology and nanotechnology and is not only an invaluable source of information to chemists, biochemists and life scientists but will also stimulate future research.
This book will provide latest insights in the functional potentials of ribonucleic acids in medine and the use of Spiegelmer and Spiegelzyme systems. It will also deal with a new type of delivery systems for cellular targeting.
In the most recent years, each of the RNA silencing pathways of plants have appeared to generate ncRNAs with dedicated functions, specialized biological activities and specific functional scopes. RNA silencing plays a crucial role in coordinating the expression, stability, protection and inheritance of eukaryotic genomes. It compromises several mechanisms, that invariably depend on core small non coding RNAs and that achieve dedicated sequence-specific functions. RNA silencing has been recognized to carry critical developmental, stress-response and bodyguard functions be coordinating the expression, protection, stability and inheritance of virtually all eukaryotic genomes. Thus, the ncRNAs encompass a wide set of mechanisms that achieve specialized functions.
Developments over the past few years have revealed the remarkable versatility of RNA in any compartment of the cell, tasks that had been thought to be exclusively in the realm of proteins and even beyond. The chapters in this book written by leading investigators in the field provide insight into various promising avenues where RNA and nucleic acid derivatives including antisense RNAs, such as siRNA, miRNAs, amplification/selection (SELEX) generated aptamers as well as ribozymes are at the threshold of impacting medicine.
Despite a half century of structural, biophysical and biochemical investigations of ribonucleic acids, they are still mysterious. RNAs stand at fertile crossroads of disciplines, integrating concepts from genomics, proteomics, dynamics as well as biochemistry and molecular biology. From 20 years it is clear, that genetic regulation of eukaryotic organisms has been misunderstood for the last years that the expression of genetic information is effected only by proteins. Basic understanding of nucleic acids has enhanced our foundation to probe novel biological functions. This is especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct secondary structure through encoded base-pairing interactions.
The aim of molecular diagnostics is preferentially to detect a developing disease before any symptoms appear. There has been a significant increase, fueled by technologies from the human genome project, in the availability of nucleic acid sequence information for all living organisms including bacteria and viruses. When combined with a different type of instrumentation applied, the resulting diagnostics is specific and sensitive. Nucleic acid-based medical diagnosis detects specific DNAs or RNAs from the infecting organism or virus and a specific gene or the expression of a gene associated with a disease. Nucleic acid approaches also stimulate a basic science by opening lines of inquiry that will lead to greater understanding of the molecules at the center of life. One can follow Richard Feynman's famous statement "What I cannot create, I do not understand."
In this book the authors review the field and explore the potential role of RNAi and other RNA technologies in cardiovascular medicine and research. They highlight the impressive recent progress but also the hurdles that still must be overcome before this promising technology is finally ready for translation and clinical use.
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
The aim of molecular diagnostics is preferentially to detect a developing disease before any symptoms appear. There has been a significant increase, fueled by technologies from the human genome project, in the availability of nucleic acid sequence information for all living organisms including bacteria and viruses. When combined with a different type of instrumentation applied, the resulting diagnostics is specific and sensitive. Nucleic acid-based medical diagnosis detects specific DNAs or RNAs from the infecting organism or virus and a specific gene or the expression of a gene associated with a disease. Nucleic acid approaches also stimulate a basic science by opening lines of inquiry that will lead to greater understanding of the molecules at the center of life. One can follow Richard Feynman’s famous statement “What I cannot create, I do not understand.”
This volume contains 29 engrossing chapters contributed by worldwide, leading research groups in the field of chemical biology. Topics include pre-biology; the establishment of the genetic code; isomerization of RNA; damage of nucleobases in RNA; the dynamic structure of nucleic acids and their analogs in DNA replication, extra- and intra-cellular transport; molecular crowding by the use of ionic liquids; new technologies enabling the modification of gene expression via editing of therapeutic genes; the use of riboswitches; the modification of mRNA cap regions; new approaches to detect appropriately modified RNAs with EPR spectroscopy and the use of parallel and high-throughput techniques for the analysis of the structure and new functions of nucleic acids. This volume discusses how chemistry can add new frontiers to the field of nucleic acids in molecular medicine, biotechnology and nanotechnology and is not only an invaluable source of information to chemists, biochemists and life scientists but will also stimulate future research.
This book will provide latest insights in the functional potentials of ribonucleic acids in medine and the use of Spiegelmer and Spiegelzyme systems. It will also deal with a new type of delivery systems for cellular targeting.
In the past few years nucleic acids technologies have grown into a powerful analytical and also increasingly therapeutic tool. It has been applied not only to the uncovering of gene functions in many organisms, but also to pathogenetic analysis and recently also for the treatment of human diseases. The book discusses in depth the potential of these innovative methods in the broad field of central nervous system and brain tumours particularly. Whereas there is currently no comprehensive overview on potential and challenges of nucleic acids technologies for basic brain tumours and for the clinical management of patients with brain tumours, this book does explicitly cover the many other aspects of the "RNA World" (pathogenic and therapeutic potential of microRNAs, aptamer technology, etc.), too. With this significantly broadened scope as compared to currently existing books it appears to be an urgently needed new publication.
Despite a half century of structural, biophysical and biochemical investigations of ribonucleic acids, they are still mysterious. RNAs stand at fertile crossroads of disciplines, integrating concepts from genomics, proteomics, dynamics as well as biochemistry and molecular biology. From 20 years it is clear, that genetic regulation of eukaryotic organisms has been misunderstood for the last years that the expression of genetic information is effected only by proteins. Basic understanding of nucleic acids has enhanced our foundation to probe novel biological functions. This is especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct secondary structure through encoded base-pairing interactions.
In the most recent years, each of the RNA silencing pathways of plants have appeared to generate ncRNAs with dedicated functions, specialized biological activities and specific functional scopes. RNA silencing plays a crucial role in coordinating the expression, stability, protection and inheritance of eukaryotic genomes. It compromises several mechanisms, that invariably depend on core small non coding RNAs and that achieve dedicated sequence-specific functions. RNA silencing has been recognized to carry critical developmental, stress-response and bodyguard functions be coordinating the expression, protection, stability and inheritance of virtually all eukaryotic genomes. Thus, the ncRNAs encompass a wide set of mechanisms that achieve specialized functions.
RNA technologies are the driving forces of modern medicine and biotechnology. They combine the fields of biochemistry, chemistry, molecular biology, cell biology, physics, nanotechnology and bioinformatics. The combination of these topics is set to revolutionize the medicine of tomorrow. After more than 15 years of extensive research in the field of RNA technologies, the first therapeutics are ready to reach the first patients. Thus we are witnessing the birth of a very exciting time in the development of molecular medicine, which will be based on the methods of RNA technologies. This volume is the first of a series. It covers various aspects of RNA interference and microRNAs, although antisense RNA applications, hammerhead ribozyme structure and function as well as non-coding RNAs are also discussed. The authors are internationally highly respected experts in the field of RNA technologies.
In this book the authors review the field and explore the potential role of RNAi and other RNA technologies in cardiovascular medicine and research. They highlight the impressive recent progress but also the hurdles that still must be overcome before this promising technology is finally ready for translation and clinical use.
|
You may like...
Sky Guide Southern Africa 2025 - An…
Astronomical Handbook for SA
Paperback
|