Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imaging and measurement systems (integrated, miniaturized, in-line, real-time, traceable, remote) Special emphasis is put on new strategies, taking into account the active combination of physical modeling, computer aided simulation and experimental data acquisition. In particular attention is directed towards new approaches for the extension of existing resolution limits that open the gates to wide-scale metrology, ranging from macro to nano, by considering dynamic changes and using advanced optical imaging and sensor systems.
In 1989 the time was hot to create a workshop series dedicated to the dicussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial applications of optical metrology. However, such a workshop must take place in a dynamic environment. The- fore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 new prin- ples of optical shape measurement, setup calibration, phase unwr- ping and nondestructive testing were the focus of discussion, while in 1997 new approaches in multi-sensor metrology, active measu- ment strategies and hybrid processing technologies played a central role. 2001, the first meeting in the 21st century, was dedicated to - tical methods for micromeasurements, hybrid measurement te- nologies and new sensor solutions for industrial inspection. The fifth workshop takes place in Stuttgart, the capital of the state of Baden- Wurttemberg and the centre of a region with a long and remarkable tradition in engineering. Thus after Berlin 1989, Bremen 1993, 1997 and 2001, Stuttgart is the third Fringe city where international - perts will meet each other to share new ideas and concepts in optical metrology. This volume contains the papers presented during FRINGE 2005."
Where conventional testing and inspection techniques fail at the micro-scale, optical techniques provide a fast, robust, and relatively inexpensive alternative for investigating the properties and quality of microsystems. Speed, reliability, and cost are critical factors in the continued scale-up of microsystems technology across many industries, and optical techniques are in a unique position to satisfy modern commercial and industrial demands. Optical Inspection of Microsystems is the first comprehensive, up-to-date survey of the most important and widely used full-field optical metrology and inspection technologies. Under the guidance of accomplished researcher Wolfgang Osten, expert contributors from industrial and academic institutions around the world share their expertise and experience with techniques such as image correlation, light scattering, scanning probe microscopy, confocal microscopy, fringe projection, grid and moire techniques, interference microscopy, laser Doppler vibrometry, holography, speckle metrology, and spectroscopy. They also examine modern approaches to data acquisition and processing. The book emphasizes the evaluation of various properties to increase reliability and promote a consistent approach to optical testing. Numerous practical examples and illustrations reinforce the concepts. Supplying advanced tools for microsystem manufacturing and characterization, Optical Inspection of Microsystems enables you to reach toward a higher level of quality and reliability in modern micro-scale applications.
In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imaging and measurement systems (integrated, miniaturized, in-line, real-time, traceable, remote) Special emphasis is put on new strategies, taking into account the active combination of physical modeling, computer aided simulation and experimental data acquisition. In particular attention is directed towards new approaches for the extension of existing resolution limits that open the gates to wide-scale metrology, ranging from macro to nano, by considering dynamic changes and using advanced optical imaging and sensor systems.
21 years ago it was a joint idea with Hans Rottenkolber to organize a workshop dedicated to the discussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial and scientific applications of optical metrology. A couple of months later more than 50 specialists from East and West met in East Berlin, the capital of the former GDR, to spend 3 days with the discussion of new principles of fringe processing. In the stimulating atmoshere the idea was born to repeat the workshop and to organize the meeting in an olympic schedule. And thus meanwhile 20 years have been passed and we have today Fringe number six. However, such a workshop takes place in a dynamic environment. Therefore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 the workshop took place in Bremen and was dedicated to new principles of optical shape measurement, setup calibration, phase unwrapping and nondestructive testing, while in 1997 new approaches in multi-sensor metrology, active measurement strategies and hybrid processing technologies played a central role. 2001, the first meeting in the 21st century, was focused to optical methods for micromeasurements, hybrid measurement technologies and new sensor solutions for industrial inspection.
In 1989 the time was hot to create a workshop series dedicated to the dicussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial applications of optical metrology. However, such a workshop must take place in a dynamic environment. The- fore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 new prin- ples of optical shape measurement, setup calibration, phase unwr- ping and nondestructive testing were the focus of discussion, while in 1997 new approaches in multi-sensor metrology, active measu- ment strategies and hybrid processing technologies played a central role. 2001, the first meeting in the 21st century, was dedicated to - tical methods for micromeasurements, hybrid measurement te- nologies and new sensor solutions for industrial inspection. The fifth workshop takes place in Stuttgart, the capital of the state of Baden- Wurttemberg and the centre of a region with a long and remarkable tradition in engineering. Thus after Berlin 1989, Bremen 1993, 1997 and 2001, Stuttgart is the third Fringe city where international - perts will meet each other to share new ideas and concepts in optical metrology. This volume contains the papers presented during FRINGE 2005."
21 years ago it was a joint idea with Hans Rottenkolber to organize a workshop dedicated to the discussion of the latest results in the automatic processing of fringe patterns. This idea was promoted by the insight that automatic and high precision phase measurement techniques will play a key role in all future industrial and scientific applications of optical metrology. A couple of months later more than 50 specialists from East and West met in East Berlin, the capital of the former GDR, to spend 3 days with the discussion of new principles of fringe processing. In the stimulating atmoshere the idea was born to repeat the workshop and to organize the meeting in an olympic schedule. And thus meanwhile 20 years have been passed and we have today Fringe number six. However, such a workshop takes place in a dynamic environment. Therefore the main topics of the previous events were always adapted to the most interesting subjects of the new period. In 1993 the workshop took place in Bremen and was dedicated to new principles of optical shape measurement, setup calibration, phase unwrapping and nondestructive testing, while in 1997 new approaches in multi-sensor metrology, active measurement strategies and hybrid processing technologies played a central role. 2001, the first meeting in the 21st century, was focused to optical methods for micromeasurements, hybrid measurement technologies and new sensor solutions for industrial inspection.
Where conventional testing and inspection techniques fail at the microscale, optical techniques provide a fast, robust, noninvasive, and relatively inexpensive alternative for investigating the properties and quality of microsystems. Speed, reliability, and cost are critical factors in the continued scale-up of microsystems technology across many industries, and optical techniques are in a unique position to satisfy modern commercial and industrial demands. Optical Inspection of Microsystems, Second Edition, extends and updates the first comprehensive survey of the most important optical measurement techniques to be successfully used for the inspection of microsystems. Under the guidance of accomplished researcher Wolfgang Osten, expert contributors from industrial and academic institutions around the world share their expertise and experience with techniques such as image processing, image correlation, light scattering, scanning probe microscopy, confocal microscopy, fringe projection, grid and moire techniques, interference microscopy, laser-Doppler vibrometry, digital holography, speckle metrology, spectroscopy, and sensor fusion technologies. They also examine modern approaches to data acquisition and processing, such as the determination of surface features and the estimation of uncertainty of measurement results. The book emphasizes the evaluation of various system properties and considers encapsulated components to increase quality and reliability. Numerous practical examples and illustrations of optical testing reinforce the concepts. Supplying effective tools for increased quality and reliability, this book Provides a comprehensive, up-to-date overview of optical techniques for the measurement and inspection of microsystems Discusses image correlation, displacement and strain measurement, electro-optic holography, and speckle metrology techniques Offers numerous practical examples and illustrations Includes calibration of optical measurement systems for the inspection of MEMS Presents the characterization of dynamics of MEMS
|
You may like...
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
|