|
Showing 1 - 17 of
17 matches in All Departments
Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.
Inequalities continue to play an essential role in mathematics. The
subject is per haps the last field that is comprehended and used by
mathematicians working in all the areas of the discipline of
mathematics. Since the seminal work Inequalities (1934) of Hardy,
Littlewood and P6lya mathematicians have laboured to extend and
sharpen the earlier classical inequalities. New inequalities are
discovered ev ery year, some for their intrinsic interest whilst
others flow from results obtained in various branches of
mathematics. So extensive are these developments that a new
mathematical periodical devoted exclusively to inequalities will
soon appear; this is the Journal of Inequalities and Applications,
to be edited by R. P. Agar wal. Nowadays it is difficult to follow
all these developments and because of lack of communication between
different groups of specialists many results are often rediscovered
several times. Surveys of the present state of the art are
therefore in dispensable not only to mathematicians but to the
scientific community at large. The study of inequalities reflects
the many and various aspects of mathemat ics. There is on the one
hand the systematic search for the basic principles and the study
of inequalities for their own sake. On the other hand the subject
is a source of ingenious ideas and methods that give rise to
seemingly elementary but nevertheless serious and challenging
problems. There are many applications in a wide variety of fields
from mathematical physics to biology and economics."
The sixthInternational Conference on General Inequalities was held
from Dec. 9 to Dec. 15, 1990, at the Mathematisches
Forschungsinstitut Oberwolfach (Black Fa rest, Germany). The
organizing committee was composed of W.N. Everitt (Birm ingham), L.
Losonczi (Debrecen) and W. Walter (Karlsruhe). Dr. A. Kovacec (
Coimbra) served cheerfully and efficiently as secretary of the
meeting. The con ference was attended by 44 participants from 20
countries. Yet again the importance of inequalities in both pure
and applied mathematics was made evident from the wide range of
interests of the individual participants, and from the wealth of
new results announced. New inequalities were presented in the usual
spread of the subject areas now expected for these meetings:
Classical and functional analysis, existence and boundary value
problems for both ordinary and partial differential equations, with
special contributions to computer science, quantum holography and
error analysis. More strongly than ever, the role played by modern
electronic computers was made clear in testing out and prohing into
the validity and structure of certain inequalities. Here the
computer acts not only for numerical calculations of great
complexity, but also in symbolic manipulation of complex finite
structures. Prob lems in inequalities which even a few years ago
were intractable, now fall to solution or receive direct and
positive guidance as a result of computer applications. The
interface between finite and infinite structures in mathematics and
the versatility of modern computers is weil developed in the
subject of general inequalities."
Diese Bibliographie bietet einen umfassenden UEberblick uber die
Literatur der letzten 100 Jahre zum Thema Klaviermusik (seit etwa
1550) in deutscher, englischer, franzoesischer und italienischer
Sprache. Aufgenommen wurden selbstandige Schriften,
Zeitschriftenaufsatze, Artikel in Sammelpublikationen, Jahrbuchern,
Festschriften und Kongressberichten sowie Dissertationen. Der erste
Teil listet die Literatur zu einzelnen Komponisten auf.
Umfangreiche Kapitel werden nach Werkgruppen und einzelnen Werken
gegliedert. Der zweite Teil verzeichnet die Literatur zur
Klaviermusik einzelner Zeitabschnitte, Lander und zu anderen
Stichworten.
Based on a translation of the 6th edition of Gewoehnliche
Differentialgleichungen by Wolfgang Walter, this edition includes
additional treatments of important subjects not found in the German
text as well as material that is seldom found in textbooks, such as
new proofs for basic theorems. This unique feature of the book
calls for a closer look at contents and methods with an emphasis on
subjects outside the mainstream. Exercises, which range from
routine to demanding, are dispersed throughout the text and some
include an outline of the solution. Applications from mechanics to
mathematical biology are included and solutions of selected
exercises are found at the end of the book. It is suitable for
mathematics, physics, and computer science graduate students to be
used as collateral reading and as a reference source for
mathematicians. Readers should have a sound knowledge of
infinitesimal calculus and be familiar with basic notions from
linear algebra; functional analysis is developed in the text when
needed.
Inequalities continue to play an essential role in mathematics. The
subject is per haps the last field that is comprehended and used by
mathematicians working in all the areas of the discipline of
mathematics. Since the seminal work Inequalities (1934) of Hardy,
Littlewood and P6lya mathematicians have laboured to extend and
sharpen the earlier classical inequalities. New inequalities are
discovered ev ery year, some for their intrinsic interest whilst
others flow from results obtained in various branches of
mathematics. So extensive are these developments that a new
mathematical periodical devoted exclusively to inequalities will
soon appear; this is the Journal of Inequalities and Applications,
to be edited by R. P. Agar wal. Nowadays it is difficult to follow
all these developments and because of lack of communication between
different groups of specialists many results are often rediscovered
several times. Surveys of the present state of the art are
therefore in dispensable not only to mathematicians but to the
scientific community at large. The study of inequalities reflects
the many and various aspects of mathemat ics. There is on the one
hand the systematic search for the basic principles and the study
of inequalities for their own sake. On the other hand the subject
is a source of ingenious ideas and methods that give rise to
seemingly elementary but nevertheless serious and challenging
problems. There are many applications in a wide variety of fields
from mathematical physics to biology and economics."
In 1964 the author's mono graph "Differential- und Integral-Un
gleichungen," with the subtitle "und ihre Anwendung bei
Abschatzungs und Eindeutigkeitsproblemen" was published. The
present volume grew out of the response to the demand for an
English translation of this book. In the meantime the literature on
differential and integral in equalities increased greatly. We have
tried to incorporate new results as far as possible. As a matter of
fact, the Bibliography has been almost doubled in size. The most
substantial additions are in the field of existence theory. In
Chapter I we have included the basic theorems on Volterra integral
equations in Banach space (covering the case of ordinary
differential equations in Banach space). Corresponding theorems on
differential inequalities have been added in Chapter II. This was
done with a view to the new sections; dealing with the line method,
in the chapter on parabolic differential equations. Section 35
contains an exposition of this method in connection with estimation
and convergence. An existence theory for the general nonlinear
parabolic equation in one space variable based on the line method
is given in Section 36. This theory is considered by the author as
one of the most significant recent applications of in equality
methods. We should mention that an exposition of Krzyzanski's
method for solving the Cauchy problem has also been added. The
numerous requests that the new edition include a chapter on
elliptic differential equations have been satisfied to some
extent."
With reference to existing fruits of research on Christian Wolff
(1679-1754) and the methods employed to describe languages for
special purposes, the study analyzes the conditions conducive to
the emergence of German as a vehicle of scholarly communication in
the early 18th century. Wolffs sophisticated ideas on language, his
modern and highly influential concept of science and scholarship
and the attendant transformation in the style of scholarly thinking
in that period are placed in their historical context, tracing the
evolution of his mathesis concept to the status of a universal
method and its application in scholarly and scientific teaching
manuals. In this way it is possible to present a precise
appreciation of the specific contribution made by Wolff to the
transition from Latin to German as a vehicle of communication in
the various branches of scientific and scholarly endeavour. In the
process Christian Wolff is clearly delineated as a precursor of the
most influental mode of reasoned thought in existence in Germany
and an adumbrator of the language of modernity.
in die Analysis des Une n d I i chen. Von Leonhard Euler. Erster
Teil. Ins Deutsche ubertragen \'Oll H. Maser. Springer-Verlag
Berlin Heidelberg GmbH 1885. Vorwort des U ebersetzers.
Meisterwerke uben ihren Einfluss auf die Fortbildung der Wissen-
schaft nicht allein durch die in ihnen niedergelegten Resultate des
forschenden Geil'ites, es lebt in ihnen eine schoepferische Kraft,
die, nie er- sterbend, immer neue Keime weckt und fort und fort bis
in die spate Ferne hinaus edle Fruchte zeitigt. Derartige
Geistesproducte, wenn sie selten werden, in ihrer ganzen Fulle ohne
Unterlass von Neuern weiteren Kreisen zuganglich zu machen, halte
ich fiir kein nutzloses Beginnen. Eben dem Zwecke soll auch die
Herausgabe der vorliegenden, ganzlich nenen Uebersetzung des ersten
Teils von Eu I er' s ", lntt-oductio in Analysin infinitoJ-um"
dienen. Diese: durch den Reichtum seine: Inhalts, durch die
Feinheit der Methoden und durch die ausserordentliche Klarheit und
Pracision der Darstellung ausgezeichnete, in arithmetischer Weise
aufgebaute -werk, welches weite Perspectiven eroeffnet, ist h!ltlt-
zutage, trotzdem oder vielleicht gerade weil fast alle neueren
Lehr- biicher aus ihm als aus einer nie versiegenden Quelle
schoepfen, schon halb in Vergcst;enheit geraten, und dies ist um so
mehr zu bedauern, als sich dem Anscheine nach die Erkenntnis
geltend macht, dass eine scharfere Bestimmung der Begriffe auch
eine weitere Entwicklung der Analysi: mit E uler' sehen
Reminiscenzen auf rein arithmetischer Grundlage ermoeglichen
durfte.
Aus den Besprechungen: "Wodurch unterscheidet sich das hiermit
begonnene Lehrwerk der Analysis von zahlreichen anderen ...
exzellenten Werken dieser Art? ... (1) die ausfuhrliche
Berucksichtigung des Warum und Woher, der historischen
Gesichtspunkte ...; (2) die Anerkennung der Existenz des Computers.
Der Autor verschliesst sich nicht vor der Tatsache, dass die
Computermathematik (hier vor allem verstanden als numerische
Mathematik) oft interessante Anwendungen der klassischen Analysis
bietet. ... (3) die grosse Fulle von Beispielen und nicht-trivialen
(aber losbaren) Ubungsaufgaben, sowie (4) der haufige Bezug zu den
Anwendungen. ... Sogar die Theorie der gewohnlichen
Differentialgleichungen, vor der manche Lehrbuchautoren eine
unuberwindliche Scheu zu haben scheinen, ist gut lesbar
dargestellt, mit vernunftigen Anwendungen. ... kann das Buch jedem
Studierenden der Mathematik wegen der Fulle des Gebotenen und wegen
des geschickten didaktischen Aufbaus auf das Warmste empfohlen
werden."
ZAMP "
Hauptthema dieses zweiten Bandes ist die Differential- und
Integralrechnung fur Funktionen von mehreren Veranderlichen. Dabei
wird auch das Lebesguesche Integral im Rn behandelt. Dem
erfolgreichen Konzept von "Analysis 1" folgend, wird viel Wert auf
historische Zusammenhange, Ausblicke und die Entwicklung der
Analysis gelegt. Zu den Besonderheiten, die uber den kanonischen
Stoff des zweiten Semesters hinausgehen, gehoeren das Morsesche und
das Sardsche Lemma, die C?-Approximation von Funktionen
(Mollifiers) und die Theorie der absolutstetigen Funktionen.
Zahlreiche Beispiele, UEbungsaufgaben und Anwendungen, z.B. aus der
Physik und Astronomie, runden dieses Lehrbuch ab. Der Abschnitt
"Loesungen und Loesungshinweise" wurde fur die Neuauflage
wesentlich erweitert, so dass die uberwiegende Zahl der Aufgaben im
Buch nun besprochen oder vollstandig geloest wird.
In der nunmehr 7., neu bearbeiteten und erweiterten Auflage legt W.
Walter sein Lehrbuch uber Gewoehnliche Differentialgleichungen vor,
das schon so etwas wie ein "moderner Klassiker" geworden ist. Das
Buch entspricht dem aktuellen Forschungsstand. Es behandelt neben
der klassischen Theorie vor allem solche Themen, die fur das
Studium dynamischer Systeme und des qualitativen Verhaltens
gewoehnlicher Differentialgleichungen unentbehrlich sind. Ein
Anhang stellt zentrale Begriffe aus Analysis und Topologie bereit.
Dieses Lehrbuch bietet dem Studenten eine optimale Einfuhrung in
das Gebiet der Differentialgleichungen, die sich durch
UEbersichtlichkeit im Aufbau und Klarheit in der Beweisfuhrung
auszeichnet. Viele instruktive Beispiele mit Loesungen zu
ausgewahlten Aufgaben runden dieses Werk ab.
Das Hauptthema dieses zweiten Bandes ist die Differential- und
Integralrechnung f}r Funktionen von mehreren Ver{nderlichen. Dabei
wird auchdas Lebesguesche Integral im Rn behandelt. Dem
erfolgreichen Konzept von Analysis I folgend, wird viel Wert auf
historische Zusammenh{nge, Ausblicke und die Entwicklung der
Analysis gelegt. Zu denBesonderheiten, die }ber den kanonischen
Stoff des zweiten Semesters hinausgehen, geh-ren das Morsesche und
das Sardsche Lemma, die C (unendlich)-Approximation von Funktionen
(Mollifiers) und die Theorie der absolutstetigen Funktionen. Die
Grundtatsachen }ber die verschiedenen Integralbegriffe werden
allesamt aus S{tzen }ber den Netzlimes abgeleitet. Bei den
Fourierreihen wird die klassische Theorie in Weiterf}hrung einer
von Chernoff und Redheffer entwickelten Methode behandelt.
Zahlreiche Beispiele, ]bungsaufgaben und Anwendungen, z.B. aus der
Physik und Astronomie, runden dieses Lehrbuch ab.
This bibliography offers a comprehensive survey of publications on
the theme
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R383
R310
Discovery Miles 3 100
Wonka
Timothee Chalamet
Blu-ray disc
R250
Discovery Miles 2 500
|