Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book introduces recovery and stabilization of common bioactive materials in foods as well as materials science aspects of engineering stable bioactive delivery systems. The book also describes most typical unit operations and processes used in recovery and manufacturing of food ingredients and foods with stabilized bioactive components. The 15 chapters of the book discuss in detail substances that need to be protected and delivered via foods and beverages to achieve good stability, bioavailability and efficacy. Dedicated chapters present current and novel technologies used for stabilization and delivery of bioactive components. The material included covers formulation, stability, digestive release, bioaccessability and bioavailability. The text features a special emphasis on the materials science and technological aspects required for stabilization and successful production of foods with bioactive components. Consumer demand for healthier, yet satisfying food products is posing increasingly tough challenges for the food industry. Scientific research reveals new bioactive food components and new functionalities of known components. Food materials science has also developed to a stage where food materials can be designed and produced to protect sensitive components for their delivery in complex food products. Such delivery systems must meet high safety and efficacy requirements and regulations, as well as economic viability criteria and consumer acceptance.
This book introduces recovery and stabilization of common bioactive materials in foods as well as materials science aspects of engineering stable bioactive delivery systems. The book also describes most typical unit operations and processes used in recovery and manufacturing of food ingredients and foods with stabilized bioactive components. The 15 chapters of the book discuss in detail substances that need to be protected and delivered via foods and beverages to achieve good stability, bioavailability and efficacy. Dedicated chapters present current and novel technologies used for stabilization and delivery of bioactive components. The material included covers formulation, stability, digestive release, bioaccessability and bioavailability. The text features a special emphasis on the materials science and technological aspects required for stabilization and successful production of foods with bioactive components. Consumer demand for healthier, yet satisfying food products is posing increasingly tough challenges for the food industry. Scientific research reveals new bioactive food components and new functionalities of known components. Food materials science has also developed to a stage where food materials can be designed and produced to protect sensitive components for their delivery in complex food products. Such delivery systems must meet high safety and efficacy requirements and regulations, as well as economic viability criteria and consumer acceptance.
Non-equilibrium States and Glass Transitions in Foods: Processing Effects and Product Specific Implications presents the tactics needed to understand and control non-equilibrium states and glass transitions in food, an essential element in maintaining the shelf-life and quality of foods. After brief introductory chapters introduce the science behind non-equilibrium states and glass transitions in foods, the book details how glass transition temperature is affected by composition and the ways it influences processability and physico-chemical changes during the storage of foods, also exploring how these effects can be controlled. The second section looks at individual foods, highlighting the implications of non-equilibrium states and glass transitions within these foods. Maintaining and improving the quality of food is of upmost importance to food companies who have to ensure that the shelf life of their products is as long as possible. A large amount of research has been performed into glass transitions in food over the last few years, however there has not been a comprehensive review. This book fills that gap.
|
You may like...
|