Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The book brings together the following issues: Theory of deterministic, random and discrete signals reproducible in oscillatory systems of generators; Generation of periodic signals with a specified spectrum, harmonic distortion factor and random signals with specified probability density function and spectral density; Synthesis of oscillatory system structures; Analysis of oscillatory systems with non-linear elements and oscillation amplitude stabilization systems; It considers the conditions and criteria of steady-state modes in signal generators on active four-pole elements with unidirectional and bidirectional transmission of signals and on two-pole elements; analogues of Barkhausen criteria; Optimization of oscillatory system structures by harmonic distortion level, minimization of a frequency error and set-up time of the steady state mode; Theory of construction of random signal generators; Construction of discrete and digital signal generators; Practical design of main units of generators; Practical block diagrams of both analog and digital signal generators.
The book brings together the following issues: Theory of deterministic, random and discrete signals reproducible in oscillatory systems of generators; Generation of periodic signals with a specified spectrum, harmonic distortion factor and random signals with specified probability density function and spectral density; Synthesis of oscillatory system structures; Analysis of oscillatory systems with non-linear elements and oscillation amplitude stabilization systems; It considers the conditions and criteria of steady-state modes in signal generators on active four-pole elements with unidirectional and bidirectional transmission of signals and on two-pole elements; analogues of Barkhausen criteria; Optimization of oscillatory system structures by harmonic distortion level, minimization of a frequency error and set-up time of the steady state mode; Theory of construction of random signal generators; Construction of discrete and digital signal generators; Practical design of main units of generators; Practical block diagrams of both analog and digital signal generators.
"Electronic Devices for Analog Signal Processing" is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in "Electronic Devices for Analog Signal Processing"can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked bya diamondand can be given to advanced readers. Paragraphs marked by/// are very important for the understanding of the studied material and together they can serve a brief summary of a section. The text marked by italic indicates new or non-traditional concepts. Calculated examples are indicated by >. The main goal of "Electronic Devices for Analog Signal Processing" is not only to give some knowledge on modern electronic devices, but also to inspire readers on the more detailed study of these devices, understanding of their operation, ability to analyze circuits, synthesize new devices, and assess the possibilities of their application for solution of particular practical problems."
"Electronic Devices for Analog Signal Processing" is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in "Electronic Devices for Analog Signal Processing"can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked bya diamondand can be given to advanced readers. Paragraphs marked by/// are very important for the understanding of the studied material and together they can serve a brief summary of a section. The text marked by italic indicates new or non-traditional concepts. Calculated examples are indicated by >. The main goal of "Electronic Devices for Analog Signal Processing" is not only to give some knowledge on modern electronic devices, but also to inspire readers on the more detailed study of these devices, understanding of their operation, ability to analyze circuits, synthesize new devices, and assess the possibilities of their application for solution of particular practical problems."
|
You may like...
|