Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. The areas of application of this technique are in biomedicine, medicine, life sciences, nanotechnology and materials sciences.
This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. The areas of application of this technique are in biomedicine, medicine, life sciences, nanotechnology and materials sciences.
"New Approaches to Image Processing Based Failure Analysis of Nano-Scale ULSI Devices" introduces the reader to transmission and scanning microscope image processing for metal and non-metallic microstructures. Engineers and scientists face the pressing problem in ULSI development and quality assurance: microscopy methods can t keep pace with the continuous shrinking of feature size in microelectronics. Nanometer scale sizes are below the resolution of light, and imaging these features is nearly impossible even with electron microscopes, due to image noise. This book presents novel "smart" image processing methods, applications, and case studies concerning quality improvement of microscope images of microelectronic chips and process optimization. It explains an approach for high-resolution imaging of advanced metallization for micro- and nanoelectronics. This approach obviates the time-consuming preparation and selection of microscope measurement and sample conditions, enabling not only better electron-microscopic resolution, but also more efficient testing and quality control. This in turn leads to productivity gains in design and development of nano-scale ULSI chips. The authors also present several approaches for super-resolving
low-resolution images to improve failure analysis of
microelectronic chips.
Written by leading optical phase microscopy experts, this book is a comprehensive reference to phase microscopy and nanoscopy techniques for biomedical applications, including differential interference contrast (DIC) microscopy, phase contrast microscopy, digital holographic microscopy, optical coherence tomography, tomographic phase microscopy, spectral-domain phase detection, and nanoparticle usage for phase nanoscopy The Editors show biomedical and optical engineers how to use
phase microscopy for visualizing unstained specimens, and support
the theoretical coverage with applied content and examples on
designing systems and interpreting results in bio- and nanoscience
applications. Tips/advice on building systems and working with advanced imaging biomedical techniques, including interpretation of phase images, and techniques for quantitative analysis based on phase microscopy. Interdisciplinary approach that combines optical engineering, nanotechnology, biology and medical aspects of this topic. Each chapterincludes practical implementations and worked examples. "
In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.
Nanophotonics is a newly developing and exciting field, with two main areas of interest: imaging/computer vision and data transport. The technologies developed in the field of nanophotonics have far reaching implications with a wide range of potential applications from faster computing power to medical applications, and "smart" eyeglasses to national security. "Integrated Nanophotonic Devices" explores one of the key technologies emerging within nanophotonics: that of nano-integrated photonic modulation devices and sensors. The authors introduce the scientific principles of these devices and provide a practical, applications-based approach to recent developments in the design, fabrication and experimentation of integrated photonic modulation circuits. For this second edition, all chapters have been expanded and
updated to reflect this rapidly advancing field, and an entirely
new chapter has been added to cover liquid crystals integrated with
nanostructures.
|
You may like...
|