Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Zoology & animal sciences > Animal ecology
Over the past decade, advances in both molecular developmental biology and evolutionary ecology have made possible a new understanding of organisms as dynamic systems interacting with their environments. This innovative book synthesizes a wealth of recent research findings to examine how environments influence phenotypic expression in individual organisms (ecological development or 'eco-devo'), and how organisms in turn alter their environments (niche construction). A key argument explored throughout the book is that ecological interactions as well as natural selection are shaped by these dual organism-environment effects. This synthesis is particularly timely as biologists seek a unified contemporary framework in which to investigate the developmental outcomes, ecological success, and evolutionary prospects of organisms in rapidly changing environments. Organism and Environment is an advanced text suitable for graduate level students taking seminar courses in ecology, evolution, and developmental biology, as well as academics and researchers in these fields.
The conservation of biological diversity depends on people's knowledge and actions. This book presents the theory and practice for creating effective education and outreach programmes for conservation. The authors describe an exciting array of techniques for enhancing school resources, marketing environmental messages, using social media, developing partnerships for conservation, and designing on-site programmes for parks and community centres. Vivid case studies from around the world illustrate techniques and describe planning, implementation, and evaluation procedures, enabling readers to implement their own new ideas effectively. Conservation Education and Outreach Techniques, now in its second edition and updated throughout, includes twelve chapters illustrated with numerous photographs showing education and outreach programmes in action, each incorporating an extensive bibliography. Helpful text boxes provide practical tips, guidelines, and recommendations for further exploration of the chapter topics. This book will be particularly relevant to conservation scientists, resource managers, environmental educators, students, and citizen activists. It will also serve as a handy reference and a comprehensive text for a variety of natural resource and environmental professionals.
Mutualisms, interactions between two species that benefit both of them, have long captured the public imagination. Their influence transcends levels of biological organization from cells to populations, communities, and ecosystems. Mutualistic symbioses were crucial to the origin of eukaryotic cells, and perhaps to the invasion of land. Mutualisms occur in every terrestrial and aquatic habitat; indeed, ecologists now believe that almost every species on Earth is involved directly or indirectly in one or more of these interactions. Mutualisms are essential to the reproduction and survival of virtually all organisms, as well as to nutrient cycles in ecosystems. Furthermore, the key ecosystem services that mutualists provide mean that they are increasingly being considered as conservation priorities, ironically at the same time as the acute risks to their ecological and evolutionary persistence are increasingly being identified. This volume, the first general work on mutualism to appear in almost thirty years, provides a detailed and conceptually-oriented overview of the subject. Focusing on a range of ecological and evolutionary aspects over different scales (from individual to ecosystem), the chapters in this book provide expert coverage of our current understanding of mutualism whilst highlighting the most important questions that remain to be answered. In bringing together a diverse team of expert contributors, this novel text captures the excitement of a dynamic field that will help to define its future research agenda.
Venom research and technology has advanced greatly, rapidly transforming the area of reptile venom. Research developments-like the development of molecular systematics-provide the framework necessary to reconstruct the evolutionary history of glands and fangs. Such research developments result in a fundamental shift in scientists' understanding of venom's evolution and usefulness in therapeutic development. Startling evolutionary expansion, including the development of new protein functions, enable the development of novel drug therapies and impact the effectiveness of anti-venoms available for the treatment of humans. Venomous Reptiles And Their Toxins is a comprehensive study of the entire scope of reptile venom, from its evolution to drug design and development. This book devotes a chapter to each toxin class found in reptile venom, detailing the full trajectory of research on the toxin in question. The comprehensive synthesis of research deals with the impact that venom has had on biomedical applications and snake evolution and ecology.
From foraging patterns in a single tree to social interactions across a home range, how primates use space is a key question in the field of primate behavioral ecology. Drawing on the latest advances in spatial analysis tools, this book offers practical guidance on applying geographic information systems (GIS) to central questions in primatology. An initial methodological section discusses niche modelling, home range analysis and agent-based modelling, with a focus on remote data collection. Research-based chapters demonstrate how ecologists apply this technology to a suite of topics including: calculating the intensity of use of both range and travel routes, assessing the impacts of logging, mining and hunting, and informing conservation strategies.
Movement, dispersal, and migration on land, in the air, and in water, are pervading features of animal life. They are performed by a huge variety of organisms, from the smallest protozoans to the largest whales, and can extend over widely different distance scales, from the microscopic to global. Integrating the study of movement, dispersal, and migration is crucial for a detailed understanding of the spatial scale of adaptation, and for analysing the consequences of landscape and climate change as well as of invasive species. This novel book adopts a broad, cross-taxonomic approach to animal movement across both temporal and spatial scales, addressing how and why animals move, and in what ways they differ in their locomotion and navigation performance. Written by an integrated team of leading researchers, the book synthesizes our current knowledge of the genetics of movement, including gene flow and local adaptations, whilst providing a future perspective on how patterns of animal migration may change over time together with their potential evolutionary consequences. Novel technologies for tracking the movement of organisms across scales are also discussed, ranging from satellite devices for tracking global migrations to nanotechnology that can follow animals only a millimetre in size. Animal Movement Across Scales is particularly suitable for graduate level students taking courses in spatial animal ecology, animal migration, and 'movement ecology', as well as providing a source of fresh ideas and opinions for those already active within the field. It will also be of interest and use to a broader audience of professional biologists interested in animal movements and migrations.
Although the field of quantitative genetics - the study of the genetic basis of variation in quantitative characteristics such as body size, or reproductive success - is almost 100 years old, its application to the study of evolutionary processes in wild populations has expanded greatly over the last few decades. During this time, the use of 'wild quantitative genetics' has provided insights into a range of important questions in evolutionary ecology, ranging from studies conducting research in well-established fields such as life-history theory, behavioural ecology and sexual selection, to others addressing relatively new issues such as populations' responses to climate change or the process of senescence in natural environments. Across these fields, there is increasing appreciation of the need to quantify the genetic - rather than just the phenotypic - basis and diversity of key traits, the genetic basis of the associations between traits, and the interaction between these genetic effects and the environment. This research activity has been fuelled by methodological advances in both molecular genetics and statistics, as well as by exciting results emerging from laboratory studies of evolutionary quantitative genetics, and the increasing availability of suitable long-term datasets collected in natural populations, especially in animals. Quantitative Genetics in the Wild is the first book to synthesize the current level of knowledge in this exciting and rapidly-expanding area. This comprehensive volume also offers exciting perspectives for future studies in emerging areas, including the application of quantitative genetics to plants or arthropods, unraveling the molecular basis of variation in quantitative traits, or estimating non-additive genetic variance. Since this book deals with many fundamental questions in evolutionary ecology, it should be of interest to graduate, post-graduate students, and academics from a wide array of fields such as animal behaviour, ecology, evolution, and genetics.
As natural habitat continues to be lost and the world steadily becomes more urbanized, biologists are increasingly studying the effect this has on wildlife. Birds are particularly good model systems since their life history, behaviour, and physiology are especially influenced by directly measurable environmental factors such as light and sound pollution. It is therefore relatively easy to compare urban individuals and populations with their rural counterparts. This accessible text focuses on the behavioural and physiological mechanisms which facilitate adaptation and on the evolutionary process that ensues. It discusses topics such as acoustics, reproductive cues, disease, and artificial feeding, and includes a series of case studies illustrating cutting edge research on these areas. Avian Urban Ecology is suitable for professional avian biologists and ornithologists as well as graduate students of avian ecology, evolution, and conservation. It will also be of relevance and use to a more general audience of urban ecologists and conservation biologists.
Ecosystems today are dynamic and complex, leaving conservationists faced with the paradox of conserving moving targets. New approaches to conservation are now required that aim to conserve ecological function and process, rather than attempt to protect static snapshots of biodiversity. To do this effectively, long-term information on ecosystem variability and resilience is needed. While there is a wealth of such information in palaeoecology, archaeology, and historical ecology, it remains an underused resource by conservation ecologists. In bringing together the disciplines of neo- and palaeoecology and integrating them with conservation biology, this novel text illustrates how an understanding of long-term change in ecosystems can in turn inform and influence their conservation and management in the Anthropocene. By looking at the history of traditional management, climate change, disturbance, and land-use, the book describes how a long-term perspective on landscape change can inform current and pressing conservation questions such as whether elephants should be culled, how best to manage fire, and whether ecosystems can or should be "re-wilded" Biodiversity Conservation and Environmental Change is suitable for senior undergraduate and post-graduate students in conservation ecology, palaeoecology, biodiversity conservation, landscape ecology, environmental change and natural resource management. It will also be of relevance and use to a global market of conservation practitioners, researchers, educators and policy-makers.
Reintroduction of Fish and Wildlife Populations provides a practical step-by-step guide to successfully planning, implementing, and evaluating the re-establishment of animal populations in former habitats or their introduction in new environments. In each chapter, experts in reintroduction biology outline a comprehensive synthesis of core concepts, issues, techniques, and perspectives. This manual and reference supports scientists and managers from fisheries and wildlife professions as they plan reintroductions, initiate releases of individuals, and manage restored populations over time. Covering a broad range of taxonomic groups, ecosystems, and global regions, this edited volume is an essential guide for academics, students, and professionals in natural resource management.
One of the most interesting and vexing problems in ecology is how
distinctly different communities of plants and animals can occur in
the same ecosystem. The theory of these systems, known as multiple
stable states, is well understood, but whether multiple stable
states actually exist in nature has remained a hotly debated
subject.
Fish are one of the most important global food sources, supplying a significant share of the world's protein consumption. From stocks of wild Alaskan salmon and North Sea cod to entire fish communities with myriad species, fisheries require careful management to ensure that stocks remain productive, and mathematical models are essential tools for doing so. Fish Ecology, Evolution, and Exploitation is an authoritative introduction to the modern size- and trait-based approach to fish populations and communities. Ken Andersen covers the theoretical foundations, mathematical formulations, and real-world applications of this powerful new modeling method, which is grounded in the latest ecological theory and population biology. He begins with fundamental assumptions on the level of individuals and goes on to cover population demography and fisheries impact assessments. He shows how size- and trait-based models shed new light on familiar fisheries concepts such as maximum sustainable yield and fisheries selectivity-insights that classic age-based theory can't provide-and develops novel evolutionary impacts of fishing. Andersen extends the theory to entire fish communities and uses it to support the ecosystem approach to fisheries management, and forges critical links between trait-based methods and evolutionary ecology. Accessible to ecologists with a basic quantitative background, this incisive book unifies the thinking in ecology and fisheries science and is an indispensable reference for anyone seeking to apply size- and trait-based models to fish demography, fisheries impact assessments, and fish evolutionary ecology.
Throughout their lives animals must complete many tasks, including finding food, avoiding predators, attracting mates, and navigating through a complex and dynamic environment. Consequently, they have evolved a staggering array of sensory organs that are fundamental to survival and reproduction and shape much of their evolution and behaviour. Sensory ecology deals with how animals acquire, process, and use information in their lives, and the sensory systems involved. It investigates the type of information that is gathered by animals, how it is used in a range of behaviours, and the evolution of such traits. It deals with both mechanistic questions (e.g. how sensory receptors capture information from the environment, and how the physical attributes of the environment affect information transmission) and functional questions (e.g. the adaptive significance of the information used by the animal to make a decision). Recent research has dealt more explicitly with how sensory systems are involved with and even drive evolutionary change, including the formation of new species. Sensory Ecology, Behaviour, and Evolution provides a broad introduction to sensory ecology across a wide range of taxonomic groups, covering all the various sensory modalities (e.g. sound, visual, chemical, magnetic, and electric) relating to diverse areas spanning anti-predator strategies, foraging, mate choice, navigation and more, with the aim being to illustrate key principles and differences. This accessible textbook is suitable for senior undergraduates, graduate students, and professional academics taking courses or conducting research in sensory ecology/biology, neuroethology, behavioural and evolutionary ecology, communication, and signalling. It will also be of relevance and use to psychologists interested in sensory information and behaviour.
The present biodiversity crisis is rife with opportunities to make important conservation decisions; however, the misuse or misapplication of the methods and techniques of animal ecology can have serious consequences for the survival of species. Still, there have been relatively few critical reviews of methodology in the field. This book provides an analysis of some of the most frequently used research techniques in animal ecology, identifying their limitations and misuses, as well as possible solutions to avoid such pitfalls. In the process, contributors to this volume present new perspectives on the collection, analysis, and interpretation of data. "Research Techniques in Animal Ecology" is an overarching account of central theoretical and methodological controversies in the field, rather than a handbook on the minutiae of techniques. The editors have forged comprehensive presentations of key topics in animal ecology, such as territory and home range estimates, habitation evaluation, population viability analysis, GIS mapping, and measuring the dynamics of societies. Striking a careful balance, each chapter begins by assessing the shortcomings and misapplications of the techniques in question, followed by a thorough review of the current literature, and concluding with possible solutions and suggested guidelines for more robust investigations.
The origin of biological diversity, via the formation of new species, can be inextricably linked to adaptation to the ecological environment. Specifically, ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent natural selection. This process of 'ecological speciation' has seen a large body of particularly focused research in the last 10-15 years, and a review and synthesis of the theoretical and empirical literature is now timely. The book begins by clarifying what ecological speciation is, its alternatives, and the predictions that can be used to test for it. It then reviews the three components of ecological speciation and discusses the geography and genomic basis of the process. A final chapter highlights future research directions, describing the approaches and experiments which might be used to conduct that future work. The ecological and genetic literature is integrated throughout the text with the goal of shedding new insight into the speciation process, particularly when the empirical data is then further integrated with theory.
The origin of biological diversity, via the formation of new species, can be inextricably linked to adaptation to the ecological environment. Specifically, ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent natural selection. This process of 'ecological speciation' has seen a large body of particularly focused research in the last 10-15 years, and a review and synthesis of the theoretical and empirical literature is now timely. The book begins by clarifying what ecological speciation is, its alternatives, and the predictions that can be used to test for it. It then reviews the three components of ecological speciation and discusses the geography and genomic basis of the process. A final chapter highlights future research directions, describing the approaches and experiments which might be used to conduct that future work. The ecological and genetic literature is integrated throughout the text with the goal of shedding new insight into the speciation process, particularly when the empirical data is then further integrated with theory.
In recent years it has become increasingly clear that chemical interactions play a fundamental role in aquatic habitats and have far-reaching evolutionary and ecological consequences. A plethora of studies have shown that aquatic organisms from most taxa and functional groups respond to minute concentrations of chemical substances released by other organisms. However, our knowledge of this "chemical network" is still negligible. Chemical interactions can be divided into two larger sub-areas based on the function of the chemical substance. First, there are interactions where chemical substances are toxic to other organisms and are used as a defence against consumers (including both herbivores and predators) or a weapon against competitors (allelopathy). Second, chemical substances may be used as a source for information of the environment; for example: how can I find the optimal habitat, the best food, the nicest partner, and avoid being eaten? Aquatic organisms are able to detect and respond to extremely low concentrations of chemical cues to answer all these questions. The book aims at connecting these intriguing chemical interactions with traditional knowledge of organism interactions. Chemical Ecology of Aquatic Systems covers a wide range of studies, both plant and animal, from different geographic regions and habitats - pelagic as well as benthic. Most of the chemical interactions are similar in freshwater and marine habitats and this book therefore strives at integrating work on both systems.
Global wetlands exhibit significant differences in both hydrology
and species composition and range from moss-dominated arctic
peatlands to seasonally-flooded tropical floodplains. They are
increasingly recognized for the important services that they
provide to both the environment and human society such as wildlife
and fish production, nutrient filtering, and carbon sequestration.
Animals that must hunt and kill for at least part of their living are inherently interesting to many people and the role that carnivores play in biological communities attract interest from ecologists and conservation biologists. Conflicts with human activities stimulate continual debates about the management of carnivore populations, and throughout the world people seek workable solutions for human/carnivore coexistence. This concise yet authoritative handbook describes research methods and techniques for the study and conservation of all terrestrial carnivore species. Particular attention is paid to techniques for managing the human/carnivore interface. Descriptions of the latest methodologies are supported by references to case studies, whilst dedicated boxes are used to illustrate how a technique is applied to a specific land cover type, species, or particular socio-economic context. The book describes the most recent advances in modelling the patterns of animal distributions, movements, and use of land cover types, as well as including the most efficient methods to trap, handle, and mark carnivores. Carnivores are biogeographically diverse and whilst extensive scientific research has investigated many aspects of carnivore biology, not all species have been equally covered. This book is unique in its intention to provide practical guidance for carrying out research and conservation of carnivores across all species and areas of the world.
Animals that must hunt and kill for at least part of their living are inherently interesting to many people and the role that carnivores play in biological communities attract interest from ecologists and conservation biologists. Conflicts with human activities stimulate continual debates about the management of carnivore populations, and throughout the world people seek workable solutions for human/carnivore coexistence. This concise yet authoritative handbook describes research methods and techniques for the study and conservation of all terrestrial carnivore species. Particular attention is paid to techniques for managing the human/carnivore interface. Descriptions of the latest methodologies are supported by references to case studies, whilst dedicated boxes are used to illustrate how a technique is applied to a specific land cover type, species, or particular socio-economic context. The book describes the most recent advances in modelling the patterns of animal distributions, movements, and use of land cover types, as well as including the most efficient methods to trap, handle, and mark carnivores. Carnivores are biogeographically diverse and whilst extensive scientific research has investigated many aspects of carnivore biology, not all species have been equally covered. This book is unique in its intention to provide practical guidance for carrying out research and conservation of carnivores across all species and areas of the world.
This book provides the first global synthesis of the biology of disturbed habitats and offers readers both the conceptual underpinnings and practical advice required to comprehend and address the unprecedented environmental challenges facing humans. Every habitat on earth has been impacted by natural disturbances such as volcanoes, earthquakes, landslides, fires, floods, and droughts. Humans have contributed many additional disturbances such as mining, urbanization, forestry, agriculture, fishing, and recreation. These anthropogenic disturbances modify and often exacerbate the effects of the natural disturbances. Together, they result in the abrupt loss of biomass or ecosystem structure and function to create denuded surfaces where novel mixtures of native and non-native microbes, plants, and animals establish, grow, and die. The Biology of Disturbed Habitats examines both natural and anthropogenic disturbances in aquatic and terrestrial habitats. It explores how nutrients and productivity are altered in the disturbed habitats, the effects of disturbance on biodiversity, and the spatial and temporal dynamics of organisms that colonize disturbed habitats. This book also addresses how to manage disturbances through appropriate conservation and restoration measures, and discusses how climate change and overpopulation now represent the most challenging disturbances at a global scale.
In nature there exist three main types of biotic interactions between individuals of different species: competition, predation, and mutualism. All three exert powerful selection pressures, and all three shape communities. However, the question of how important interspecific competition in nature really is remains controversial and unresolved. This book provides a critical and exhaustive review of the topic. Although the examples are limited mostly to birds (interspecific competition and community structure have been exhaustively studied in this animal group, and a lot of experimental data are available), the conclusions reached have a far broader relevance to population ecologists in general. The book reasons that the coexistence of species is the result of both past and presently on-going interspecific competition. Furthermore, understanding the importance of interspecific competition in natural systems will be increasingly important when modelling the effects of climate change on populations.
The genomics revolution has expanded from its origins in molecular biology to impact upon every discipline in the life sciences, including ecology. Several lines of ecological research can now be profitably addressed using genomics technology, including issues of nutrient cycling, population structure, life-history variation, trophic interaction, stress responses, and adaptation to environmental change. This new edition addresses a series of fundamental ecological questions: the relationship between community structure and ecological function in ecosystems; how variation in life-history patterns among species can be explained from interaction between the genome and the environment; the molecular responses to changing and toxic environmental conditions; adaptive phenotypes and their relationship to genetic variation. Each of these questions is evaluated in the light of recent advances in genomics research, paying particular attention to data obtained from sequencing and screening of environmental genomes (metagenomics), microarray-based transcription profiling, gene expression directed by signal-transduction pathways, and the analysis of genomic polymorphisms. The chapters covering these key areas are preceded by discussions of genomics methodology (including an overview of next-generation sequencing technologies) and comparative genomics, and the book concludes with a chapter on integrative approaches such as ecological control analysis. The authors also provide a comparative survey of the properties of genomes (genome size, gene families, synteny, and polymorphism) for prokaryotes as well as the main eukaryotic models. An Introduction to Ecological Genomics incorporates a balance of plant, animal, and microbial examples, and continues to define the new and exciting field of ecological genomics.
Communication is an essential factor underpinning the interactions
between species and the structure of their communities.
Plant-animal interactions are particularly diverse due to the
complex nature of their mutualistic and antagonistic relationships.
However the evolution of communication and the underlying
mechanisms responsible remain poorly understood.
Urbanization is a global phenomenon that is increasingly
challenging human society. It is therefore crucially important to
ensure that the relentless expansion of cities and towns proceeds
sustainably. Urban ecology, the interdisciplinary study of
ecological patterns and processes in towns and cities, is a rapidly
developing field that can provide a scientific basis for the
informed decision-making and planning needed to create both viable
and sustainable cities. |
You may like...
Environmental Stress, Adaptation and…
K. Bijlsma, Volker Loeschcke
Hardcover
R5,627
Discovery Miles 56 270
Perspectives in Animal Ecology and…
V K & Verma Anil K & Singh G Gupta
Hardcover
R2,642
Discovery Miles 26 420
Population Genomics: Wildlife
Paul A. Hohenlohe, Om P. Rajora
Hardcover
R4,940
Discovery Miles 49 400
Bat Evolution, Ecology, and Conservation
Rick A. Adams, Scott C. Pedersen
Hardcover
Rebirding - Restoring Britain's Wildlife
Benedict Macdonald
Paperback
(1)
Tuco-Tucos - An Evolutionary Approach to…
Thales Renato Ochotorena de Freitas, Gislene Lopes Goncalves, …
Hardcover
R2,818
Discovery Miles 28 180
Predictive Species and Habitat Modeling…
C. Ashton Drew, Yolanda F. Wiersma, …
Hardcover
R6,187
Discovery Miles 61 870
Plant-Animal Interactions - Source of…
Kleber Del-Claro, Helena Maura Torezan-Silingardi
Hardcover
R3,317
Discovery Miles 33 170
|