![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics
The book offers a novel approach to the study of the complex dynamics of cities. It is based on (1) Synergetics as a science of cooperation and selforganization, (2) information theory including semantic and pragmatic aspects, and optimization principles, (3) a theory of steady state maintenance, and of (4) phase transition, i.e. qualitative changes of structure or behavior. From this novel theoretical vantage point, the book addresses particularly three issues that stand at the core of current discourse on cities: Urban Scaling, Smart Cities and City Planning. An important consequence of "the 21st century as the age of cities", is that the study of cities currently attracts scientists from a variety of disciplines, ranging from physics, mathematics and computer science, through urban studies, architecture, planning and human geography, to economics, psychology, sociology, public administration and more. The book is thus likely to attract scholars, researchers and students of these research domains, of complexity theories of cities, as well as of general complexity theory. In addition, it is directed also to practitioners of urbanism, city planning and urban design.
There has been extensive research in the past twenty years devoted to a better understanding of the stable and other closely related infinitely divisible models. The late Professor Stamatis Cambanis, a distinguished educator and researcher, played a special leadership role in the development of these fields from the early seventies until his untimely death in April 1995. This commemorative volume honoring Stamatis Cambanis consists of a collection of research articles devoted to review the state of the art in rapidly developing research areas in Stochastic Processes and to explore new directions of research. The volume is a tribute to the life and work of Stamatis by his students, friends, and colleagues whose personal and professional lives he deeply touched through his generous insights and dedication to his profession.
This textbook presents the application of mathematical methods and theorems tosolve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature. Vector analysis plays an important role in engineering, and is presented in terms of indicial notation, making use of the Einstein summation convention. This text differs from most texts in that symbolic vector notation is completely avoided, as suggested in the textbooks on tensor algebra and analysis written in German by Duschek and Hochreiner, in the 1960s. The defining properties of vector fields, the divergence and curl, are introduced in terms of fluid mechanics. The integral theorems of Gauss (the divergence theorem), Stokes, and Green are introduced also in the context of fluid mechanics. The final application of vector analysis consists of the introduction of non-Cartesian coordinate systems with straight axes, the formal definition of vectors and tensors. The stress and strain tensors are defined as an application. Partial differential equations of the first and second order are discussed. Two-dimensional linear partial differential equations of the second order are covered, emphasizing the three types of equation: hyperbolic, parabolic, and elliptic. The hyperbolic partial differential equations have two real characteristic directions, and writing the equations along these directions simplifies the solution process. The parabolic partial differential equations have two coinciding characteristics; this gives useful information regarding the character of the equation, but does not help in solving problems. The elliptic partial differential equations do not have real characteristics. In contrast to most texts, rather than abandoning the idea of using characteristics, here the complex characteristics are determined, and the differential equations are written along these characteristics. This leads to a generalized complex variable system, introduced by Wirtinger. The vector field is written in terms of a complex velocity, and the divergence and the curl of the vector field is written in complex form, reducing both equations to a single one. Complex variable methods are applied to elliptical problems in fluid mechanics, and linear elasticity. The techniques presented for solving parabolic problems are the Laplace transform and separation of variables, illustrated for problems of heat flow and soil mechanics. Hyperbolic problems of vibrating strings and bars, governed by the wave equation are solved by the method of characteristics as well as by Laplace transform. The method of characteristics for quasi-linear hyperbolic partial differential equations is illustrated for the case of a failing granular material, such as sand, underneath a strip footing. The Navier Stokes equations are derived and discussed in the final chapter as an illustration of a highly non-linear set of partial differential equations and the solutions are interpreted by illustrating the role of rotation (curl) in energy transfer of a fluid.
The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly solvable damped oscillator models with variable parameters is associated with classical special functions of mathematical physics. Combining principles with observations in an easy to follow way, it inspires further thinking for mathematicians and physicists. Contents Part I: Dissipative geometry and general relativity theory Pseudo-Riemannian geometry and general relativity Dynamics of universe models Anisotropic and homogeneous universe models Metric waves in a nonstationary universe and dissipative oscillator Bosonic and fermionic models of a Friedman-Robertson-Walker universe Time dependent constants in an oscillatory universe Part II: Variational principle for time dependent oscillations and dissipations Lagrangian and Hamilton descriptions Damped oscillator: classical and quantum theory Sturm-Liouville problem as a damped oscillator with time dependent damping and frequency Riccati representation of time dependent damped oscillators Quantization of the harmonic oscillator with time dependent parameters
This book is a rare jewel, describing fundamental research in a highly dynamic field of subatomic physics. It presents an overview of cross section measurements of deeply virtual Compton scattering. Understanding the structure of the proton is one of the most important challenges that physics faces today. A typical tool for experimentally accessing the internal structure of the proton is lepton-nucleon scattering. In particular, deeply virtual Compton scattering at large photon virtuality and small four-momentum transfer to the proton provides a tool for deriving a three-dimensional tomographic image of the proton. Using clear language, this book presents the highly complex procedure used to derive the momentum-dissected transverse size of the proton from a pioneering measurement taken at CERN. It describes in detail the foundations of the measurement and the data analysis, and includes exhaustive studies of potential systematic uncertainties, which could bias the result.
The author presents current work in bond graph methodology by
providing a compilation of contributions from experts across the
world that covers theoretical topics, applications in various areas
as well as software for bond graph modeling.
This work introduces heavy ion beam probe diagnostics and presents an overview of its applications. The heavy ion beam probe is a unique tool for the measurement of potential in the plasma core in order to understand the role of the electric field in plasma confinement, including the mechanism of transition from low to high confinement regimes (L-H transition). This allows measurement of the steady-state profile of the plasma potential, and its use has been extended to include the measurement of quasi-monochromatic and broadband oscillating components, the turbulent-particle flux and oscillations of the electron density and poloidal magnetic field. Special emphasis is placed on the study of Geodesic Acoustic Modes and Alfven Eigenmodes excited by energetic particles with experimental data sets. These experimental studies help to understand the link between broadband turbulent physics and quasi-coherent oscillations in devices with a rather different magnetic configuration. The book also compares spontaneous and biased transitions from low to high confinement regimes on both classes of closed magnetic traps (tokamak and stellarator) and highlights the common features in the behavior of electric potential and turbulence of magnetized plasmas. A valuable resource for physicists, postgraduates and students specializing in plasma physics and controlled fusion.
With the diversification of Internet services and the increase in mobile users, efficient management of network resources has become an extremely important issue in the field of wireless communication networks (WCNs). Adaptive resource management is an effective tool for improving the economic efficiency of WCN systems as well as network design and construction, especially in view of the surge in mobile device demands. This book presents modelling methods based on queueing theory and Markov processes for a wide variety of WCN systems, as well as precise and approximate analytical solution methods for the numerical evaluation of the system performance. This is the first book to provide an overview of the numerical analyses that can be gleaned by applying queueing theory, traffic theory and other analytical methods to various WCN systems. It also discusses the recent advances in the resource management of WCNs, such as broadband wireless access networks, cognitive radio networks, and green cloud computing. It assumes a basic understanding of computer networks and queueing theory, and familiarity with stochastic processes is also recommended. The analysis methods presented in this book are useful for first-year-graduate or senior computer science and communication engineering students. Providing information on network design and management, performance evaluation, queueing theory, game theory, intelligent optimization, and operations research for researchers and engineers, the book is also a valuable reference resource for students, analysts, managers and anyone in the industry interested in WCN system modelling, performance analysis and numerical evaluation.
This textbook provides an introduction to the growing interdisciplinary field of computational science. It combines a foundational development of numerical methods with a variety of illustrative applications spread across numerous areas of science and engineering. The intended audience is the undergraduate who has completed introductory coursework in mathematics and computer science. Students gain computational acuity by authoring their own numerical routines and by practicing with numerical methods as they solve computational models. This education encourages students to learn the importance of answering: How expensive is a calculation, how trustworthy is a calculation, and how might we model a problem to apply a desired numerical method? The text is written in two parts. Part I provides a succinct, one-term inauguration into the primary routines on which a further study of computational science rests. The material is organized so that the transition to computational science from coursework in calculus, differential equations, and linear algebra is natural. Beyond the mathematical and computational content of Part I, students gain proficiency with elemental programming constructs and visualization, which are presented in MATLAB syntax. The focus of Part II is modeling, wherein students build computational models, compute solutions, and report their findings. The models purposely intersect numerous areas of science and engineering to demonstrate the pervasive role played by computational science.
Conventional methods of financial modeling are often overly exact, to the point that their purpose--to aid in financial decision making--is easily lost. Tarrazo's approach, the use of approximation, gives professionals in finance, economics, and portfolio management a sound and sophisticated way to improve their decision making, particularly in such tasks as economic prediction, financial planning, and portfolio management. Tarrazo reviews how to build models, especially those with simultaneous equation systems, then provides a simple way to use approximate equation systems to solve them. Down to earth, readable, and meticulously explained throughout, the book is not only an important tool in practical problem solving situations, but it also provides valuable methods and guidance for upper level students and their instructors. Among the book's important contributions is its chapter on portfolio optimization. Tarrazo helps clarify the theory and application of modern portfolio theory, especially in regard to its implementation with commonly available information management tools (such as EXCEL). He also provides innovative ways to optimize portfolios under realistic conditions and a method to obtain optimal weights in interval form that does not rely on probability; instead, it relies on the mathematical quality of the matrix in the optimization. Another chapter shows that approximate equations are a general-purpose optimization tool, one that subsumes all other known optimization tools such as classical and mathematical programming. Tarrazo closes with an unusually full bibliography, containing more than 200 references spanning several areas of analysis and various disciplines.
This book presents the multi-criteria approach to decision support, as well as the various multi-criteria tools to help avoid multi-objective optimization. The book is intended as a tool for understanding the multi-criteria tools for decision support and modeling in mathematical programming. It helps to structure models, to easily model complex constraints, to have a basic modeling guide for any multi-criteria system and to better understand models already existing in the literature. The book is structured in the same order as components of the methodology, established in a multi-criteria optimization problem. It introduces the elements of the actors, the decision-making activity under criteria, calculations, specifications and objective criterion.
This book studies electron resonant tunneling in two- and three-dimensional quantum waveguides of variable cross-sections in the time-independent approach. Mathematical models are suggested for the resonant tunneling and develop asymptotic and numerical approaches for investigating the models. Also, schemes are presented for several electronics devices based on the phenomenon of resonant tunneling. Compared to its first edition, this book includes four new chapters, redistributes the content between chapters and modifies the estimates of the remainders in the asymptotics of resonant tunneling characteristics. The book is addressed to mathematicians, physicists, and engineers interested in waveguide theory and its applications in electronics.
This elegant little book discusses a famous problem that helped to define the field now known as topology: What is the minimum number of colors required to print a map such that no two adjoining countries have the same color, no matter how convoluted their boundaries. Many famous mathematicians have worked on the problem, but the proof eluded fomulation until the 1950s, when it was finally cracked with a brute-force approach using a computer. The book begins by discussing the history of the problem, and then goes into the mathematics, both pleasantly enough that anyone with an elementary knowledge of geometry can follow it, and still with enough rigor that a mathematician can also read it with pleasure. The authors discuss the mathematics as well as the philosophical debate that ensued when the proof was announced: Just what is a mathematical proof, if it takes a computer to provide one -- and is such a thing a proof at all?
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe's leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.
This book presents the theory and practical applications of the Master equation approach, which provides a powerful general framework for model building in a variety of disciplines. The aim of the book is to not only highlight different mathematical solution methods, but also reveal their potential by means of practical examples. Part I of the book, which can be used as a toolbox, introduces selected statistical fundamentals and solution methods for the Master equation. In Part II and Part III, the Master equation approach is applied to important applications in the natural and social sciences. The case studies presented mainly hail from the social sciences, including urban and regional dynamics, population dynamics, dynamic decision theory, opinion formation and traffic dynamics; however, some applications from physics and chemistry are treated as well, underlining the interdisciplinary modelling potential of the Master equation approach. Drawing upon the author's extensive teaching and research experience and consulting work, the book offers a valuable guide for researchers, graduate students and professionals alike.
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
This book contains the proceedings of the Seventh National Conference of the Italian Systems Society. The title, Systemics of Incompleteness and Quasi-Systems, aims to underline the need for Systemics and Systems Science to deal with the concepts of incompleteness and quasiness. Classical models of Systemics are intended to represent comprehensive aspects of phenomena and processes. They consider the phenomena in their temporal and spatial completeness. In these cases, possible incompleteness in the modelling is assumed to have a provisional or practical nature, which is still under study, and because there is no theoretical reason why the modelling cannot be complete. In principle, this is a matter of non-complex phenomena, to be considered using the concepts of the First Systemics. When dealing with emergence, there are phenomena which must be modelled by systems having multiple models, depending on the aspects being taken into consideration. Here, incompleteness in the modelling is intrinsic, theoretically relating changes in properties, structures, and status of system. Rather than consider the same system parametrically changing over time, we consider sequences of systems coherently. We consider contexts and processes for which modelling is incomplete, being related to only some properties, as well as those for which such modelling is theoretically incomplete-as in the case of processes of emergence and for approaches considered by the Second Systemics. In this regard, we consider here the generic concept of quasi explicating such incompleteness. The concept of quasi is used in various disciplines including quasi-crystals, quasi-particles, quasi-electric fields, and quasi-periodicity. In general, the concept of quasiness for systems concerns their continuous structural changes which are always meta-stable, waiting for events to collapse over other configurations and possible forms of stability; whose equivalence depends on the type of phenomenon under study. Interest in the concept of quasiness is not related to its meaning of rough approximation, but because it indicates an incompleteness which is structurally sufficient to accommodate processes of emergence and sustain coherence or generate new, equivalent or non-equivalent, levels. The conference was devoted to identifying, discussing and understanding possible interrelationships of theoretical disciplinary improvements, recognised as having prospective fundamental roles for a new Quasi-Systemics. The latter should be able to deal with problems related to complexity in more general and realistic ways, when a system is not always a system and not always the same system. In this context, the inter-disciplinarity should consist, for instance, of a constructionist, incomplete, non-ideological, multiple, contradiction-tolerant, Systemics, always in progress, and in its turn, emergent.
This monograph, co-authored by three longtime collaborators, aims to promote the interdisciplinary field of mathematical biology by providing accessible new approaches to study natural systems. As there is currently scarce literature on the applications of mathematical modelling for biology research, this book presents a new way of studying interactions at the level of populations, societies, ecosystems, and biomes through open-sourced modeling platforms. It offers an interdisciplinary approach to analyzing natural phenomena-for example, by showing how master equations developed to describe electrical circuits can also describe biological systems mathematically. Ultimately it promotes a method of study based on modelling and mathematical principles, facilitating collaboration between mathematicians, biologists, engineers, and other researchers to enrich knowledge of the world's ecosystems.
This book presents the Proceedings of the 54th Winter School of Theoretical Physics on Simplicity of Complexity in Economic and Social Systems, held in Ladek Zdroj, Poland, from 18 to 24 February 2018. The purpose of the book is to introduce the new interdisciplinary research that links statistical physics, and particular attention is given to link physics of complex systems, with financial analysis and sociology. The main tools used in these areas are numerical simulation of agents behavior and the interpretation of results with the help of complexity methods, therefore a background in statistical physics and in physics of phase transition is necessary to take the first steps towards these research fields called econophysics and sociophysics. In this perspective, the book is intended to graduated students and young researchers who want to begin the study of this established new area, which connects physicists, economists, sociologists and IT professionals, to better understand complexity phenomena existing not only in physics but also in complex systems being seemingly far from traditional view at physics.
This book presents a detailed study of the Lanczos potential in general relativity by using tetrad formalisms. It demonstrates that these formalisms offer some simplifications over the tensorial methods, and investigates a general approach to finding the Lanczos potential for algebraic space-time by translating all the tensorial relations concerning the Lanczos potential into the language of tetrad formalisms and using the Newman-Penrose and Geroch-Held-Penrose formalisms. In addition, the book obtains the Lanczos potential for perfect fluid space-time, and applies the results to cosmological models of the universe. In closing, it highlights other methods, apart from tetrad formalisms, for finding the Lanczos potential, as well as further applications of the Newman-Penrose formalism. Given its scope, the book will be of interest to pure mathematicians, theoretical physicists and cosmologists, and will provide common ground for communication among these scientific communities.
This book offers a detailed description of the histogram probabilistic multi-hypothesis tracker (H-PMHT), providing an accessible and intuitive introduction to the mathematical mechanics of H-PMHT as well as a definitive reference source for the existing literature on the method. Beginning with basic concepts, the authors then move on to address extensions of the method to a broad class of tracking problems. The latter chapters present applications using recorded data from experimental radar, sonar and video sensor systems. The book is supplemented with software that both furthers readers' understanding and acts as a toolkit for those who wish to apply the methods to their own problems.
While typically many approaches have been mainly mathematics focused, graph theory has become a tool used by scientists, researchers, and engineers in using modeling techniques to solve real-world problems. Graph Theory for Operations Research and Management: Applications in Industrial Engineering presents traditional and contemporary applications of graph theory in the areas of industrial engineering, management science, and applied operations research. This comprehensive collection of research introduces the useful basic concepts of graph theory in real world applications.
This book focuses on mathematical theory and numerical simulation related to various areas of continuum mechanics, such as fracture mechanics, (visco)elasticity, optimal shape design, modelling of earthquakes and Tsunami waves, material structure, interface dynamics and complex systems. Written by leading researchers from the fields of applied mathematics, physics, seismology, engineering, and industry with an extensive knowledge of mathematical analysis, it helps readers understand how mathematical theory can be applied to various phenomena, and conversely, how to formulate actual phenomena as mathematical problems. This book is the sequel to the proceedings of the International Conference of Continuum Mechanics Focusing on Singularities (CoMFoS) 15 and CoMFoS16.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems. This fully updated new edition addresses many topics not typically found in books at this level, including: Bound state solutions of quantum pendulum Morse oscillator Solutions of classical counterpart of quantum mechanical systems A criterion for bound state Scattering from a locally periodic potential and reflection-less potential Modified Heisenberg relation Wave packet revival and its dynamics An asymptotic method for slowly varying potentials Klein paradox, Einstein-Podolsky-Rosen (EPR) paradox, and Bell's theorem Delayed-choice experiments Fractional quantum mechanics Numerical methods for quantum systems A collection of problems at the end of each chapter develops students' understanding of both basic concepts and the application of theory to various physically important systems. This book, along with the authors' follow-up Quantum Mechanics II: Advanced Topics, provides students with a broad, up-to-date introduction to quantum mechanics. Quantum Mechanics II: Advanced Topics offers a comprehensive exploration of the state-of-the-art in various advanced topics of current research interest. A follow-up to the authors' introductory book Quantum Mechanics I: The Fundamentals, this book expounds basic principles, theoretical treatment, case studies, worked-out examples and applications of advanced topics including quantum technologies. A thoroughly revised and updated this unique volume presents an in-depth and up-to-date progress on the growing topics including latest achievements on quantum technology. In the second edition six new chapters are included and the other ten chapters are extensively revised. Features Covers classical and quantum field theories, path integral formalism and supersymmetric quantum mechanics. Highlights coherent and squeezed states, Berry's phase, Aharonov-Bohm effect and Wigner function. Explores salient features of quantum entanglement and quantum cryptography. Presents basic concepts of quantum computers and the features of no-cloning theorem and quantum cloning machines. Describes the theory and techniques of quantum tomography, quantum simulation and quantum error correction. Introduces other novel topics including quantum versions of theory of gravity, cosmology, Zeno effect, teleportation, games, chaos and steering. Outlines the quantum technologies of ghost imaging, detection of weak amplitudes and displacements, lithography, metrology, teleportation of optical images, sensors, batteries and internet. Contains several worked-out problems and exercises in each chapter. Quantum Mechanics II: Advanced Topics addresses various currently emerging exciting topics of quantum mechanics. It emphasizes the fundamentals behind the latest cutting-edge developments to help explain the motivation for deeper exploration. The book is a valuable resource for graduate students in physics and engineering wishing to pursue research in quantum mechanics. |
![]() ![]() You may like...
Contingent Workers' Voice in Southern…
Sofia Perez De Guzman, Marcela Iglesias-Onofrio, …
Hardcover
R3,121
Discovery Miles 31 210
|