![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
The first World Meeting for Women in Mathematics - (WM)(2) - was a satellite event of the International Congress of Mathematicians (ICM) 2018 in Rio de Janeiro. With a focus on Latin America, the first (WM)(2) brought together mathematicians from all over the world to celebrate women mathematicians, and also to reflect on gender issues in mathematics, challenges, initiatives, and perspectives for the future. Its activities were complemented by a panel discussion organized by the Committee for Women in Mathematics (CWM) of the International Mathematical Union (IMU) inside the ICM 2018 entitled "The gender gap in mathematical and natural sciences from a historical perspective". This historical proceedings book, organized by CWM in coordination with the Association for Women in Mathematics, records the first (WM)(2) and the CWM panel discussion at ICM 2018. The first part of the volume includes a report of activities with pictures of the first (WM)(2) and a tribute to Maryam Mirzakhani, the first woman to be awarded the Fields medal. It also comprises survey research papers from invited lecturers, which provide panoramic views of different fields in pure and applied mathematics. The second part of the book contains articles from the panelists of the CWM panel discussion, which consider the historical context of the gender gap in mathematics. It includes an analysis of women lecturers in the ICM since its inception. This book is dedicated to the memory of Maryam Mirzakhani.
This book is an introduction to the mathematical analysis of p- and hp-finite elements applied to elliptic problems in solid and fluid mechanics, and is suitable for graduate students and researchers who have had some prior exposure to finite element methods (FEM). In the last decade the p-, hp-, and spectral element methods have emerged as efficient and robust approximation methods for several classes of problems in this area. The aim of this book is therefore to establish the exponential convergence of such methods for problems with the piecewise analytic solutions which typically arise in engineering. It looks at the variational formulation of boundary value problems with particular emphasis on the regularity of the solution. The books then studies the p- and hp- convergence of FEM in one and two dimensions, supplying complete proofs. Also covered are hp-FEM for saddle point problems and the techniques for establishing the discrete infsup condition. Finally, hp-FEM in solid mechanics and the issue of locking is addressed in the context of these methods.
The fascinating world of canonical moments--a unique look at this
practical, powerful statistical and probability tool
This book provides a careful treatment of the theory of algebraic Riccati equations. It consists of four parts: the first part is a comprehensive account of necessary background material in matrix theory including careful accounts of recent developments involving indefinite scalar products and rational matrix functions. The second and third parts form the core of the book and concern the solutions of algebraic Riccati equations arising from continuous and discrete systems. The geometric theory and iterative analysis are both developed in detail. The last part of the book is an exciting collection of eight problem areas in which algebraic Riccati equations play a crucial role. These applications range from introductions to the classical linear quadratic regulator problems and the discrete Kalman filter to modern developments in HD*W*w control and total least squares methods.
The subject of nonlinear partial differential equations is experiencing a period of intense activity in the study of systems underlying basic theories in geometry, topology and physics. These mathematical models share the property of being derived from variational principles. Understanding the structure of critical configurations and the dynamics of the corresponding evolution problems is of fundamental importance for the development of the physical theories and their applications. This volume contains survey lectures in four different areas, delivered by leading resarchers at the 1995 Barrett Lectures held at The University of Tennessee: nonlinear hyperbolic systems arising in field theory and relativity (S. Klainerman); harmonic maps from Minkowski spacetime (M. Struwe); dynamics of vortices in the Ginzburg-Landau model of superconductivity (F.-H. Lin); the Seiberg-Witten equations and their application to problems in four-dimensional topology (R. Fintushel). Most of this material has not previously been available in survey form. These lectures provide an up-to-date overview and an introduction to the research literature in each of these areas, which should prove useful to researchers and graduate students in mathematical physics, partial differential equations, differential geometry and topology.
This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.
This book, dedicated to Winfried Stute on the occasion of his 70th birthday, presents a unique collection of contributions by leading experts in statistics, stochastic processes, mathematical finance and insurance. The individual chapters cover a wide variety of topics ranging from nonparametric estimation, regression modelling and asymptotic bounds for estimators, to shot-noise processes in finance, option pricing and volatility modelling. The book also features review articles, e.g. on survival analysis.
This volume presents the Proceedings of the Joint U.S. / Israel Workshop on Operator Theory and Its Applications, held February 24-28, 1992, at the Ben Gurion University of the Negev, Beersheva. This event was sponsored by the United States / Israel Binational Science Foundation and the Ben Gurion University of the Negev, and many outstanding experts in operator theory took part. The workshop honored Professor Emeritus Moshe Livsic on the occasion of his retirement. The volume contains a selection of papers covering a wide range of topics in modern operator theory and its applications, from abstract operator theory to system theory and computers in operator models. The papers treat linear and nonlinear problems, and study operators from different abstract and concrete classes. Many of the topics concern the area in which contributions of Moshe Livsic were extremely important. This book will appeal to a wide audience of pure and applied mathematicians and engineers.
This reference provides detailed information which enables you to quickly understand the physics and modeling of mainstream devices. Packed with nearly 1,000 equations and 396 illustrations.
This book addresses mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. Using the classification system defined in the EU Framework Programme for Research and Innovation H2020, several of the topics covered belong to the challenge climate action, environment, resource efficiency and raw materials; and some to health, demographic change and wellbeing; while others belong to Europe in a changing world - inclusive, innovative and reflective societies. The 19th European Conference on Mathematics for Industry, ECMI2016, was held in Santiago de Compostela, Spain in June 2016. The proceedings of this conference include the plenary lectures, ECMI awards and special lectures, mini-symposia (including the description of each mini-symposium) and contributed talks. The ECMI conferences are organized by the European Consortium for Mathematics in Industry with the aim of promoting interaction between academy and industry, leading to innovation in both fields and providing unique opportunities to discuss the latest ideas, problems and methodologies, and contributing to the advancement of science and technology. They also encourage industrial sectors to propose challenging problems where mathematicians can provide insights and fresh perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
The present book is the first of the two volume proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine, from August 18-22, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This first volume is devoted to the theory of differential operators and related topics. It opens with a description of the conference, biographical material and a number of survey papers about the work of M. G. Krein. The main part of the book consists of original research papers presenting the state of the art in the area of differential operators. The second volume of these proceedings, entitled Operator Theory and Related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide range of readership in pure and applied mathematics, physics and engineering sciences.
Frank Arntzenius presents a series of radical new ideas about the structure of space and time. Space, Time, and Stuff is an attempt to show that physics is geometry: that the fundamental structure of the physical world is purely geometrical structure. Along the way, he examines some non-standard views about the structure of spacetime and its inhabitants, including the idea that space and time are pointless, the idea that quantum mechanics is a completely local theory, the idea that antiparticles are just particles travelling back in time, and the idea that time has no structure whatsoever. The main thrust of the book, however, is that there are good reasons to believe that spaces other than spacetime exist, and that it is the existence of these additional spaces that allows one to reduce all of physics to geometry. Philosophy, and metaphysics in particular, plays an important role here: the assumption that the fundamental laws of physics are simple in terms of the fundamental physical properties and relations is pivotal. Without this assumption one gets nowhere. That is to say, when trying to extract the fundamental structure of the world from theories of physics one ignores philosophy at one's peril!
Existence Theory for Generalized Newtonian Fluids provides a rigorous mathematical treatment of the existence of weak solutions to generalized Navier-Stokes equations modeling Non-Newtonian fluid flows. The book presents classical results, developments over the last 50 years of research, and recent results with proofs.
This book addresses the topic of fractional-order modeling of nuclear reactors. Approaching neutron transport in the reactor core as anomalous diffusion, specifically subdiffusion, it starts with the development of fractional-order neutron telegraph equations. Using a systematic approach, the book then examines the development and analysis of various fractional-order models representing nuclear reactor dynamics, ultimately leading to the fractional-order linear and nonlinear control-oriented models. The book utilizes the mathematical tool of fractional calculus, the calculus of derivatives and integrals with arbitrary non-integer orders (real or complex), which has recently been found to provide a more compact and realistic representation to the dynamics of diverse physical systems. Including extensive simulation results and discussing important issues related to the fractional-order modeling of nuclear reactors, the book offers a valuable resource for students and researchers working in the areas of fractional-order modeling and control and nuclear reactor modeling.
This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.
Survey Sampling Theory and Applications offers a comprehensive overview of survey sampling, including the basics of sampling theory and practice, as well as research-based topics and examples of emerging trends. The text is useful for basic and advanced survey sampling courses. Many other books available for graduate students do not contain material on recent developments in the area of survey sampling. The book covers a wide spectrum of topics on the subject, including repetitive sampling over two occasions with varying probabilities, ranked set sampling, Fays method for balanced repeated replications, mirror-match bootstrap, and controlled sampling procedures. Many topics discussed here are not available in other text books. In each section, theories are illustrated with numerical examples. At the end of each chapter theoretical as well as numerical exercises are given which can help graduate students.
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
The new discipline of chaotics will alter our thinking about the real forces of change in our society. As presented here, chaotics emphasizes that the real world cannot be understood in terms of conventional deterministic philosophies or standard chaos theory, but that complexity in itself has a powerful but subtle role to play. How does this apply to business and society? To what degree are our lives governed by misguided notions--or do our businesses succeed by chance--because real societal and business forces and their effects are not really understood? Beginning with the foundations of the discipline, this book applies chaotics to business and wealth creation and to society. On the social side, it examines a sea-change in the philosophy of everyday living, be it the concept of employment or our relationship to the environment. The book examines personal identity and its loss in modern society, as well as the search for new contacts and gratification through technology. The authors look at the stunted growth of philosophy against science but emphasize what philosophy has to tell us in a chaotic world. A major new text which will be of interest to professionals and scholars in business, government, and society.
This new work by Wilfred Kaplan, the distinguished author of
influential mathematics and engineering texts, is destined to
become a classic. Timely, concise, and content-driven, it provides
an intermediate-level treatment of maxima, minima, and
optimization. Assuming only a background in calculus and some
linear algebra, Professor Kaplan presents topics in order of
difficulty. In four short chapters, he describes basic concepts and
geometric aspects of maxima and minima, progresses to problems with
side conditions, introduces optimization and programming, and
concludes with an in-depth discussion of research topics involving
the duality theorems of Fenchel and Rockafellar. Throughout the
text, the subject of convexity is gradually developed-from its
theoretical underpinnings to problems, and finally, to its role in
applications. Other features include:
An essential contribution to the study of the history of computers, this work identifies the computer's impact on the physical, biological, cognitive, and medical sciences. References fundamental to the understudied area of the history of scientific computing also document the significant role of the sciences in helping to shape the development of computer technology. More broadly, the many resources on scientific computing help demonstrate how the computer was the most significant scientific instrument of the 20th century. The only guide of its kind covering the use and impact of computers on the the physical, biological, medical, and cognitive sciences, it contains more than 1,000 annotated citations to carefully selected secondary and primary resources. Historians of technology and science will find this a very useful resource. Computer scientists, physicians, biologists, chemists, and geologists will also benefit from this extensive bibliography on the history of computer applications and the sciences.
The author introduces the supersymmetric localization technique, a new approach for computing path integrals in quantum field theory on curved space (time) defined with interacting Lagrangian. The author focuses on a particular quantity called the superconformal index (SCI), which is defined by considering the theories on the product space of two spheres and circles, in order to clarify the validity of so-called three-dimensional mirror symmetry, one of the famous duality proposals. In addition to a review of known results, the author presents a new definition of SCI by considering theories on the product space of real-projective space and circles. In this book, he explains the concept of SCI from the point of view of quantum mechanics and gives localization computations by reducing field theoretical computations to many-body quantum mechanics. He applies his new results of SCI with real-projective space to test three-dimensional mirror symmetry, one of the dualities of quantum field theory. Real-projective space is known to be an unorientable surface like the Mobius strip, and there are many exotic effects resulting from Z2 holonomy of the surface. Thanks to these exotic structures, his results provide completely new evidence of three-dimensional mirror symmetry. The equivalence expected from three-dimensional mirror symmetry is transformed into a conjectural non-trivial mathematical identity through the new SCI, and he performs the proof of the identity using a q-binomial formula.
This book treats dynamic stability of structures under nonconservative forces. it is not a mathematics-based, but rather a dynamics-phenomena-oriented monograph, written with a full experimental background. Starting with fundamentals on stability of columns under nonconservative forces, it then deals with the divergence of Euler's column under a dead (conservative) loading from a view point of dynamic stability. Three experiments with cantilevered columns under a rocket-based follower force are described to present the verifiability of nonconservative problems of structural stability. Dynamic stability of columns under pulsating forces is discussed through analog experiments, and by analytical and experimental procedures together with related theories. Throughout the volume the authors retain a good balance between theory and experiments on dynamic stability of columns under nonconservative loading, offering a new window to dynamic stability of structures, promoting student- and scientist-friendly experiments.
This textbook provides concise coverage of the basics of linear and integer programming which, with megatrends toward optimization, machine learning, big data, etc., are becoming fundamental toolkits for data and information science and technology. The authors' approach is accessible to students from almost all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification and computer vision. The presentations enables the basis for numerous approaches to solving hard combinatorial optimization problems through randomization and approximation. Readers will learn to cast various problems that may arise in their research as optimization problems, understand the cases where the optimization problem will be linear, choose appropriate solution methods and interpret results appropriately.
This book summarizes the main advances in the field of nonlinear evolution and pattern formation caused by longwave instabilities in fluids. It will allow readers to master the multiscale asymptotic methods and become familiar with applications of these methods in a variety of physical problems. Longwave instabilities are inherent to a variety of systems in fluid dynamics, geophysics, electrodynamics, biophysics, and many others. The techniques of the derivation of longwave amplitude equations, as well as the analysis of numerous nonlinear equations, are discussed throughout. This book will be of value to researchers and graduate students in applied mathematics, physics, and engineering, in particular within the fields of fluid mechanics, heat and mass transfer theory, and nonlinear dynamics. |
You may like...
|