![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
The book deals with applications of the AdS/CFT correspondence to strongly coupled condensed matter systems. In particular, it concerns with the study of thermo-electric transport properties of holographic models exhibiting momentum dissipation and their possible applications to the transport properties of strange metals. The present volume constitutes one of the few examples in the literature in which the topic is carefully reviewed both from the experimental and theoretical point of view, including not only holographic results but also standard condensed matter achievements developed in the past decades. This work might be extremely useful both for scientific and pedagogical purposes.
This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems' nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book's core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (but non-implementable) predictors, is preserved with approximate predictors developed in the book. An applications-driven engineer will find a large number of explicit formulae, which are given throughout the book to assist in the application of the theory to a variety of control problems. A mathematician will find sophisticated new proof techniques, which are developed for the purpose of providing global stability guarantees for the nonlinear infinite-dimensional delay system under feedback laws employing practically implementable approximate predictors. Researchers working on global stabilization problems for time-delay systems will find this monograph to be a helpful summary of the state of the art, while graduate students in the broad field of systems and control will advance their skills in nonlinear control design and the analysis of nonlinear delay systems.
Algebraic Identification and Estimation Methods in Feedback Control Systems presents a model-based algebraic approach to online parameter and state estimation in uncertain dynamic feedback control systems. This approach evades the mathematical intricacies of the traditional stochastic approach, proposing a direct model-based scheme with several easy-to-implement computational advantages. The approach can be used with continuous and discrete, linear and nonlinear, mono-variable and multi-variable systems. The estimators based on this approach are not of asymptotic nature, and do not require any statistical knowledge of the corrupting noises to achieve good performance in a noisy environment. These estimators are fast, robust to structured perturbations, and easy to combine with classical or sophisticated control laws. This book uses module theory, differential algebra, and operational calculus in an easy-to-understand manner and also details how to apply these in the context of feedback control systems. A wide variety of examples, including mechanical systems, power converters, electric motors, and chaotic systems, are also included to illustrate the algebraic methodology. Key features: * Presents a radically new approach to online parameter and state estimation. * Enables the reader to master the use and understand the consequences of the highly theoretical differential algebraic viewpoint in control systems theory. * Includes examples in a variety of physical applications with experimental results. * Covers the latest developments and applications. Algebraic Identification and Estimation Methods in Feedback Control Systems is a comprehensive reference for researchers and practitioners working in the area of automatic control, and is also a useful source of information for graduate and undergraduate students.
This book introduces Meaningful Purposive Interaction Analysis (MPIA) theory, which combines social network analysis (SNA) with latent semantic analysis (LSA) to help create and analyse a meaningful learning landscape from the digital traces left by a learning community in the co-construction of knowledge. The hybrid algorithm is implemented in the statistical programming language and environment R, introducing packages which capture - through matrix algebra - elements of learners' work with more knowledgeable others and resourceful content artefacts. The book provides comprehensive package-by-package application examples, and code samples that guide the reader through the MPIA model to show how the MPIA landscape can be constructed and the learner's journey mapped and analysed. This building block application will allow the reader to progress to using and building analytics to guide students and support decision-making in learning.
This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types - those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.
Parallel CFD 2000, the Twelfth in an International series of
meetings featuring computational fluid dynamics research on
parallel computers, was held May 22-25, 2000 in Trondheim, Norway.
This book - specifically developed as a novel textbook on elementary classical mechanics - shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks. Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts. While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Python, and a chapter devoted to the basics of scientific programming with Python is included. A parallel edition using Matlab instead of Python is also available. Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.
In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vortex ring impingement upon solid boundaries and how the use of a porous surface alters the impingement process. Chapters 3 and 4 focus upon the formation of synthetic jets from vortex ring structures experimentally and numerically, the challenges in understanding the relationships between their generation parameters and how they can be utilized in flow separation control problems. Chapter 5 looks at the use of imposing selected nozzle trailing-edge modifications to effect changes upon the near-field dynamics associated with circular, noncircular and coaxial jets, with a view to control their mixing behaviour. And last but not least, Chapter 6 details the use of unique impinging jet configurations and how they may lend themselves towards greater understanding and operating efficacies in heat transfer problems. This book will be useful to postgraduate students and researchers alike who wish to get up to speed regarding the latest developments in vortex ring and jet flow behaviour and how their interesting flow dynamics may be put into good use in their intended applications.
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a reference for active researchers in the field.
Uncertainty Quantification (UQ) is a relatively new research area which describes the methods and approaches used to supply quantitative descriptions of the effects of uncertainty, variability and errors in simulation problems and models. It is rapidly becoming a field of increasing importance, with many real-world applications within statistics, mathematics, probability and engineering, but also within the natural sciences. Literature on the topic has up until now been largely based on polynomial chaos, which raises difficulties when considering different types of approximation and does not lead to a unified presentation of the methods. Moreover, this description does not consider either deterministic problems or infinite dimensional ones. This book gives a unified, practical and comprehensive presentation of the main techniques used for the characterization of the effect of uncertainty on numerical models and on their exploitation in numerical problems. In particular, applications to linear and nonlinear systems of equations, differential equations, optimization and reliability are presented. Applications of stochastic methods to deal with deterministic numerical problems are also discussed. Matlab (R) illustrates the implementation of these methods and makes the book suitable as a textbook and for self-study.
This book introduces the basic fundamentals, models, emulators and analyses of mem-elements in the circuit theory with applications. The book starts reviewing the literature on mem-elements, models and their recent applications. It presents mathematical models, numerical results, circuit simulations, and experimental results for double-loop hysteresis behavior of mem-elements. The authors introduce a generalized memristor model in the fractional-order domain under different input and different designs for emulator-based mem-elements, with circuit and experimental results. The basic concept of memristive-based relaxation-oscillators in the circuit theory is also covered. The reader will moreover find in this book information on memristor-based multi-level digital circuits, memristor-based multi-level multiplier and memcapacitor-based oscillators and synaptic circuits.
The papers collected in this volume focus on new perspectives on individuals, society, and science, specifically in the field of socio-economic systems. The book is the result of a scientific collaboration among experts from "Alexandru Ioan Cuza" University of Iasi (Romania), "G. d'Annunzio" University of Chieti-Pescara (Italy), "University of Defence" of Brno (Czech Republic), and "Pablo de Olavide" University of Sevilla (Spain). The heterogeneity of the contributions presented in this volume reflects the variety and complexity of social phenomena. The book is divided in four Sections as follows. The first Section deals with recent trends in social decisions. Specifically, it aims to understand which are the driving forces of social decisions. The second Section focuses on the social and public sphere. Indeed, it is oriented on recent developments in social systems and control. Trends in quantitative theories and models are described in Section 3, where many new formal, mathematical-statistical tools for modelling complex social phenomena are presented. Finally, Section 4 shows integrative theories and models; particularly, it deals with the ethical, cultural and political approaches to social science, the pedagogical methods, and the relationship between literature, politics, religion and society. The book is addressed to sociologists, philosophers, mathematicians, statisticians, people interested in ethics, and specialists in the fields of communication, social, and political sciences.
The goal of this book is to present Stochastic Calculus at an introductory level and not at its maximum mathematical detail. The author aims to capture as much as possible the spirit of elementary deterministic Calculus, at which students have been already exposed. This assumes a presentation that mimics similar properties of deterministic Calculus, which facilitates understanding of more complicated topics of Stochastic Calculus.
This book presents a collection of selected papers that represent the current variety of research on the teaching and learning of probability. The respective chapters address a diverse range of theoretical, empirical and practical aspects underpinning the teaching and learning of probability, curricular issues, probabilistic reasoning, misconceptions and biases, as well as their pedagogical implications. These chapters are divided into THREE main sections, dealing with: TEACHING PROBABILITY, STUDENTS' REASONING AND LEARNING AND EDUCATION OF TEACHERS. In brief, the papers presented here include research dealing with teachers and students at different levels and ages (from primary school to university) and address epistemological and curricular analysis, as well as the role of technology, simulations, language and visualisation in teaching and learning probability. As such, it offers essential information for teachers, researchers and curricular designers alike.
This work is concerned with combinatorial aspects arising in the theory of exactly solvable models and representation theory. Recent developments in integrable models reveal an unexpected link between representation theory and statistical mechanics through combinatorics. For example, Young tableaux, which describe the basis of irreducible representations, appear in the Bethe Ansatz method in quantum spin chains as labels for the eigenstates for Hamiltonians. Taking into account the various criss-crossing among mathematical subject, Physical Combinatorics presents new results and exciting ideas from three viewpoints; representation theory, integrable models, and combinatorics. This volume will be of interest to mathematical physicists and graduate students in the the above-mentioned fields. Contributors to the volume: T.H. Baker, O. Foda, G. Hatayama, Y. Komori, A. Kuniba, T. Nakanishi, M. Okado, A. Schilling, J. Suzuki, T. Takagi, D. Uglov, O. Warnaar, T.A. Welsh, A. Zabrodin
This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.
This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out examples were included.
The book includes articles from eminent international scientists discussing a wide spectrum of topics of current importance in mathematics and statistics and their applications. It presents state-of-the-art material along with a clear and detailed review of the relevant topics and issues concerned. The topics discussed include message transmission, colouring problem, control of stochastic structures and information dynamics, image denoising, life testing and reliability, survival and frailty models, analysis of drought periods, prediction of genomic profiles, competing risks, environmental applications and chronic disease control. It is a valuable resource for researchers and practitioners in the relevant areas of mathematics and statistics.
This book offers a theoretical description of topological matter in terms of effective field theories, and in particular topological field theories, focusing on two main topics: topological superconductors and topological insulators.Even though there is vast literature on these subjects, the book fills an important gap by providing a concise introduction to both topological order and symmetry-protected phases using a modern mathematical language, and developing the theoretical concepts by highlighting the physics and the physical properties of the systems. Further, it discusses in detail the topological interactions for topologically ordered matter, and the response to smooth external fields for symmetry protected matter. The book also covers more specialized topics that cannot be found elsewhere. Specifically, the response of superconductors to geometry, including the newly discovered geo-Meissner effect; and a correction to the usual Meissner effect, only present in the topologically interesting chiral superconductors.
This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.
This book presents an upper level text on semilinear evolutionary partial differential equations aimed at the graduate and postgraduate level. Cazenave and Haraux present in a self-contained way, the typical basic properties of solutions to semi-linear evolutionary partial differential equations, with special emphasis on global properties. The main objective of this book is to provide a didactic approach to the subject , and the main readership will be graduate students in mathematical analysis, as well as professional applied mathematicians.
Including contributions from leading experts in the field, this book covers applications and developments of heuristic search methods for solving complex optimization problems. The book covers various local search strategies including genetic algorithms, simulated annealing, tabu search and hybrids thereof. These methods have proved extraordinarily successful by solving some of the most difficult, real-world problems. At the interface between Artificial Intelligence and Operational Research, research in this exciting area is progressing apace spurred on by the needs of industry and commerce. The introductory chapter provides a clear overview of the basic techniques and useful pointers to further reading and to current research. The second section of the book covers some of the most recent and exciting developments of the basic techniques, with suggestions not only for extending and improving these but also for hybridizing and incorporating automatic adaption. The third section contains a number of case studies, surveys and comparative studies which span a wide range of application areas ranging from the classic Steiner tree problem to more practical problems arising in telecommunications and data analysis. The coverage of the latest research and the illustrative case studies will ensure that the book is invaluable for researchers and professionals with an interest in heuristic search methods.
During the last two decades, structural equation modelling (SEM) has emerged as a powerful multivariate data analysis tool in social science research settings, especially in the fields of sociology, psychology, and education. Social science researchers and students benefit greatly from acquiring knowledge and skills in SEM, since the methods can provide a bridge between the theoretical and empirical aspects of behavioural research. Ramlall explains in a rigorous, concise, and practical manner all the vital components embedded in structural equation modelling (SEM). Focusing on R and Stata to implement and perform various structural equation models, Ramlall examines the types, benefits, and drawbacks of SEM, delving into model specifications and identifications, fit evaluations, and path diagrams.
In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell-Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much larger than the classical electron radius and is relevant to plasmonics and emission physics. This book will appeal to researchers interested in advanced aspects of electromagnetic theory. Treating the classical approach in detail, including non-relativistic aspects and the Lagrangian framework, and comparing the neoclassical theory with quantum mechanics and the de Broglie-Bohm theory, this work is completely self-contained. |
You may like...
Emerging Technologies for Sustainable…
Gnaneswar Gnaneswar Gude
Paperback
Job Scheduling Strategies for Parallel…
Dror G. Feitelson, Larry Rudolph
Paperback
R1,537
Discovery Miles 15 370
International Environmental Economics…
Gunther G. Schulze, Heinrich W. Ursprung
Hardcover
R2,011
Discovery Miles 20 110
Parallel Computing in Optimization
A. Migdalas, Panos M. Pardalos, …
Hardcover
R7,963
Discovery Miles 79 630
Input/Output in Parallel and Distributed…
Ravi Jain, John Werth, …
Hardcover
R5,364
Discovery Miles 53 640
The Empirical Validation of House Energy…
Mark Andrew Dewsbury
Hardcover
Persistent Organic Pollutants in Asia…
An Li, Shinsuke Tanabe, …
Hardcover
R4,245
Discovery Miles 42 450
|