![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics
This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer's usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).
This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.
This volume offers a fundamentally different way of conceptualizing time and reality. Today, we see time predominantly as the linear-sequential order of events, and reality accordingly as consisting of facts that can be ordered along sequential time. But what if this conceptualization has us mistaking the "exhausts" for the "real thing", i.e. if we miss the best, the actual taking place of reality as it occurs in a very differently structured, primordial form of time, the time-space of the present? In this new conceptual framework, both the sequential aspect of time and the factual aspect of reality are emergent phenomena that come into being only after reality has actually taken place. In the new view, facts are just the "traces" that the actual taking place of reality leaves behind on the co-emergent "canvas'' of local spacetime. Local spacetime itself emerges only as facts come into being - and only facts can be adequately localized in it. But, how does reality then actually occur? It is conceived as a "constellatory self-unfolding", characterized by strong self-referentiality, and taking place in the primordial form of time, the not yet sequentially structured "time-space of the present". Time is seen here as an ontophainetic platform, i.e. as the stage on which reality can first occur. This view of time (and, thus, also space) seems to be very much in accordance with what we encounter in quantum physics before the so-called collapse of the wave function. In parallel, classical and relativistic physics largely operate within the factual portrait of reality, and the sequential aspect of time, respectively. Only singularities constitute an important exemption: here the canvas of local spacetime - that emerged together with factization - melts down again. In the novel framework quantum reduction and singularities can be seen and addressed as inverse transitions: In quantum physical state reduction reality "gains" the chrono-ontological format of facticity, and the sequential aspect of time becomes applicable. In singularities, by contrast, the inverse happens: Reality loses its local spacetime formation and reverts back into its primordial, pre-local shape - making in this way the use of causality relations, Boolean logic and the dichotomization of subject and object obsolete. For our understanding of the relation between quantum and relativistic physics this new view opens up fundamentally new perspectives: Both are legitimate views of time and reality, they just address very different chrono-ontological portraits, and thus should not lead us to erroneously subjugating one view under the other. The task of the book is to provide a formal framework in which this radically different view of time and reality can be addressed properly. The mathematical approach is based on the logical and topological features of the Borromean Rings. It draws upon concepts and methods of algebraic and geometric topology - especially the theory of sheaves and links, group theory, logic and information theory, in relation to the standard constructions employed in quantum mechanics and general relativity, shedding new light on the pestilential problems of their compatibility. The intended audience includes physicists, mathematicians and philosophers with an interest in the conceptual and mathematical foundations of modern physics.
This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 ("Mathematics of Planet Earth 2013"). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth's environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation techniques for climate modeling is amply illustrated in this volume, which also identifies important future challenges.
The book is devoted to intelligent design of structures as a novel kind of designing based on computational intelligence. The proposed methodology based on computational intelligence has some heuristic and learning attributes typical for natural intelligence. Computer models of the structures are built on the base of the finite element method (FEM), the boundary element method (BEM) or coupling of FEM and BEM. The short description of possible discrete models of structures using these methods is included in the Chapter 2. Various kinds of intelligent approaches using sequential, parallel, distributed, fuzzy and hybrid evolutionary, immune and particle swarm algorithms and neural computing are presented in Chapter 3. Different kinds of optimization such as shape, topology, size and material optimization for structures under static and dynamical mechanical and thermo-mechanical loadings, structures with cracks and composite structures are considered in Chapter 4. Multi-objective optimization for coupled problems is also taken into account. Several numerical examples illustrating these kinds of optimization are presented for 2-D (plane-stress or plane-strain, plates, shells) as well as 3-D structures. Chapter 5 is devoted to special problems related to solving inverse problems in which boundary conditions, defects such as voids or cracks and material characteristics, are unknown. Closing comments summarizing the book are presented in Chapter 6.
This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.
This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials.
This book outlines a possible future theoretical perspective for systemics, its conceptual morphology and landscape while the Good-Old-Fashioned-Systemics (GOFS) era is still under way. The change from GOFS to future systemics can be represented, as shown in the book title, by the conceptual change from Collective Beings to Quasi-systems. With the current advancements, problems and approaches occurring in contemporary science, systemics are moving beyond the traditional frameworks used in the past. From Collective Beings to Coherent Quasi-Systems outlines a conceptual morphology and landscape for a new theoretical perspective for systemics introducing the concept of Quasi-systems. Advances in domains such as theoretical physics, philosophy of science, cell biology, neuroscience, experimental economics, network science and many others offer new concepts and technical tools to support the creation of a fully transdisciplinary General Theory of Change. This circumstance requires a deep reformulation of systemics, without forgetting the achievements of established conventions. The book is divided into two parts. Part I, examines classic systemic issues from new theoretical perspectives and approaches. A new general unified framework is introduced to help deal with topics such as dynamic structural coherence and Quasi-systems. This new theoretical framework is compared and contrasted with the traditional approaches. Part II focuses on the process of translation into social culture of the theoretical principles, models and approaches introduced in Part I. This translation is urgent in post-industrial societies where emergent processes and problems are still dealt with by using the classical or non-systemic knowledge of the industrial phase.
This handbook serves as a comprehensive, systematic reference to the major mathematical models used in radio engineering and communications, and presents computer simulation algorithms to help the reader estimate parameters of radio systems. It provides the technical details necessary to design and analyze radar, communication, radio navigation, radio control, electronic intelligence and electronic warfare systems. Mathcad routines, cited in the handbook, should help the reader to optimize radar system performance analysis, and can be used to create custom-made software that better answers specific needs.
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
6 Preliminaries.- 6.1 The operator of singular integration.- 6.2 The space Lp(?, ?).- 6.3 Singular integral operators.- 6.4 The spaces $$L_{p}^{ + }(\Gamma, \rho ), L_{p}^{ - }(\Gamma, \rho ) and \mathop{{L_{p}^{ - }}}\limits^{^\circ } (\Gamma, \rho )$$.- 6.5 Factorization.- 6.6 One-sided invertibility of singular integral operators.- 6.7 Fredholm operators.- 6.8 The local principle for singular integral operators.- 6.9 The interpolation theorem.- 7 General theorems.- 7.1 Change of the curve.- 7.2 The quotient norm of singular integral operators.- 7.3 The principle of separation of singularities.- 7.4 A necessary condition.- 7.5 Theorems on kernel and cokernel of singular integral operators.- 7.6 Two theorems on connections between singular integral operators.- 7.7 Index cancellation and approximative inversion of singular integral operators.- 7.8 Exercises.- Comments and references.- 8 The generalized factorization of bounded measurable functions and its applications.- 8.1 Sketch of the problem.- 8.2 Functions admitting a generalized factorization with respect to a curve in Lp(?, ?).- 8.3 Factorization in the spaces Lp(?, ?).- 8.4 Application of the factorization to the inversion of singular integral operators.- 8.5 Exercises.- Comments and references.- 9 Singular integral operators with piecewise continuous coefficients and their applications.- 9.1 Non-singular functions and their index.- 9.2 Criteria for the generalized factorizability of power functions.- 9.3 The inversion of singular integral operators on a closed curve.- 9.4 Composed curves.- 9.5 Singular integral operators with continuous coefficients on a composed curve.- 9.6 The case of the real axis.- 9.7 Another method of inversion.- 9.8 Singular integral operators with regel functions coefficients.- 9.9 Estimates for the norms of the operators P?, Q? and S?.- 9.10 Singular operators on spaces H?o(?, ?).- 9.11 Singular operators on symmetric spaces.- 9.12 Fredholm conditions in the case of arbitrary weights.- 9.13 Technical lemmas.- 9.14 Toeplitz and paired operators with piecewise continuous coefficients on the spaces lp and ?p.- 9.15 Some applications.- 9.16 Exercises.- Comments and references.- 10 Singular integral operators on non-simple curves.- 10.1 Technical lemmas.- 10.2 A preliminary theorem.- 10.3 The main theorem.- 10.4 Exercises.- Comments and references.- 11 Singular integral operators with coefficients having discontinuities of almost periodic type.- 11.1 Almost periodic functions and their factorization.- 11.2 Lemmas on functions with discontinuities of almost periodic type.- 11.3 The main theorem.- 11.4 Operators with continuous coefficients - the degenerate case.- 11.5 Exercises.- Comments and references.- 12 Singular integral operators with bounded measurable coefficients.- 12.1 Singular operators with measurable coefficients in the space L2(?).- 12.2 Necessary conditions in the space L2(?).- 12.3 Lemmas.- 12.4 Singular operators with coefficients in ?p(?). Sufficient conditions.- 12.5 The Helson-Szegoe theorem and its generalization.- 12.6 On the necessity of the condition a ? Sp.- 12.7 Extension of the class of coefficients.- 12.8 Exercises.- Comments and references.- 13 Exact constants in theorems on the boundedness of singular operators.- 13.1 Norm and quotient norm of the operator of singular integration.- 13.2 A second proof of Theorem 4.1 of Chapter 12.- 13.3 Norm and quotient norm of the operator S? on weighted spaces.- 13.4 Conditions for Fredholmness in spaces Lp(?, ?).- 13.5 Norms and quotient norm of the operator aI + bS?.- 13.6 Exercises.- Comments and references.- References.
This uniquely accessible book helps readers use CABology to solve real-world business problems and drive real competitive advantage. It provides reliable, concise information on the real benefits, usage and operationalization aspects of utilizing the "Trio Wave" of cloud, analytic and big data. Anyone who thinks that the game changing technology is slow paced needs to think again. This book opens readers' eyes to the fact that the dynamics of global technology and business are changing. Moreover, it argues that businesses must transform themselves in alignment with the Trio Wave if they want to survive and excel in the future. CABology focuses on the art and science of optimizing the business goals to deliver true value and benefits to the customer through cloud, analytic and big data. It offers business of all sizes a structured and comprehensive way of discovering the real benefits, usage and operationalization aspects of utilizing the Trio Wave.
This book helps students, researchers and quantitative finance practitioners to understand both basic and advanced topics in the valuation and modeling of financial and commodity derivatives, their institutional framework and risk management. It provides an overview of the new regulatory requirements such as Basel III, the Fundamental Review of the Trading Book (FRTB), Interest Rate Risk of the Banking Book (IRRBB), or the Internal Capital Assessment Process (ICAAP). The reader will also find a detailed treatment of counterparty credit risk, stochastic volatility estimation methods such as MCMC and Particle Filters, and the concepts of model-free volatility, VIX index definition and the related volatility trading. The book can also be used as a teaching material for university derivatives and financial engineering courses.
This book explores the ways in which the broad range of technologies that make up the smart city infrastructure can be harnessed to incorporate more playfulness into the day-to-day activities that take place within smart cities, making them not only more efficient but also more enjoyable for the people who live and work within their confines. The book addresses various topics that will be of interest to playable cities stakeholders, including the human-computer interaction and game designer communities, computer scientists researching sensor and actuator technology in public spaces, urban designers, and (hopefully) urban policymakers. This is a follow-up to another book on Playable Cities edited by Anton Nijholt and published in 2017 in the same book series, Gaming Media and Social Effects.
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. This volume is devoted specifically to the mathematical aspects of Clifford algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, "q"-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
This book is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
The book presents pedagogical reviews of important topics on high energy physics to the students and researchers in particle physics. The book also discusses topics on the Quark-Gluon plasma, thermal field theory, perturbative quantum chromodynamics, anomalies and cosmology. Students of particle physics need to be well-equipped with basic understanding of many concepts underlying the standard models of particle physics and cosmology. This is particularly true today when experimental results from colliders, such as large hadron collider (LHC) and relativistic heavy ion collider (RHIC), as well as inferences from cosmological observations, are expected to further expand our understanding of particle physics at high energies. This volume is the second in the Surveys in Theoretical High Energy Physics Series (SThEP). Topics covered in this book are based on lectures delivered at the SERC Schools in Theoretical High Energy Physics at the Physical Research Laboratory, Ahmedabad, and the University of Hyderabad.
The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.
This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes' many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing.
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water-TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field.
This thesis describes the application of a Monte Carlo radiative transfer code to accretion disc winds in two types of systems spanning 9 orders of magnitude in mass and size. In both cases, the results provide important new insights. On small scales, the presence of disc winds in accreting white dwarf binary systems has long been inferred from the presence of ultraviolet absorption lines. Here, the thesis shows that the same winds can also produce optical emission lines and a recombination continuum. On large scales, the thesis constructs a simple model of disc winds in quasars that is capable of explaining both the observed absorption and emission signatures - a crucial advance that supports a disc-wind based unification scenario for quasars. Lastly, the thesis also includes a theoretical investigation into the equivalent width distribution of the emission lines in quasars, which reveals a major challenge to all unification scenarios.
This monograph investigates the existence of higher order sliding mode in discrete-time systems and propounds a new concept of discrete-time higher order sliding mode. The authors propose a definition of discrete-time higher order sliding mode and a control law is designed by means of a concept for an uncertain linear-time invariant system, as well as the behavior of the closed-loop system is analyzed. Moreover, the book includes a thorough treatment of the probabilistic and non-deterministic case, i.e. stochastic discrete-time higher order sliding mode. The target audience primarily comprises research experts in control theory but the book may also be beneficial for graduate students alike.
This book is designed to serve as a textbook for courses offered to undergraduate and graduate students enrolled in Mathematics. The first edition of this book was published in 2015. As there is a demand for the next edition, it is quite natural to take note of the several suggestions received from the users of the earlier edition over the past six years. This is the prime motivation for bringing out a revised second edition with a thorough revision of all the chapters. The book provides a clear understanding of the basic concepts of differential and integral calculus starting with the concepts of sequences and series of numbers, and also introduces slightly advanced topics such as sequences and series of functions, power series, and Fourier series which would be of use for other courses in mathematics for science and engineering programs. The salient features of the book are - precise definitions of basic concepts; several examples for understanding the concepts and for illustrating the results; includes proofs of theorems; exercises within the text; a large number of problems at the end of each chapter as home-assignments. The student-friendly approach of the exposition of the book would be of great use not only for students but also for the instructors. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in a mathematics course.
|
![]() ![]() You may like...
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Mathematical Modelling - Education…
C Haines, P. Galbraith, …
Paperback
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R4,186
Discovery Miles 41 860
|