![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics
With applications in quantum field theory, general relativity and elementary particle physics, this four-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This third volume covers supersymmetry, including detailed coverage of conformal supersymmetry in four and some higher dimensions, furthermore quantum superalgebras are also considered. Contents Lie superalgebras Conformal supersymmetry in 4D Examples of conformal supersymmetry for D > 4 Quantum superalgebras
This book addresses flow separation within the context of fluid-structure interaction phenomena. Here, new findings from two research communities focusing on fluids and structures are brought together, emphasizing the importance of a unified multidisciplinary approach. The book covers the theory, experimental findings, numerical simulations, and modeling in fluid dynamics and structural mechanics for both incompressible and compressible separated unsteady flows. There is a focus on the morphing of lifting structures in order to increase their aerodynamic and/or hydrodynamic performances, to control separation and to reduce noise, as well as to inspire the design of novel structures. The different chapters are based on contributions presented at the ERCOFTAC Symposium on Unsteady Separation in Fluid-Structure Interaction held in Mykonos, Greece, 17-21 June, 2013 and include extended discussions and new highlights. The book is intended for students, researchers and practitioners in the broad field of computational fluid dynamics and computational structural mechanics. It aims at supporting them while dealing with practical issues, such as developing control strategies for unsteady separation and applying smart materials and biomimetic approaches for design and control.
This contributed volume explores the achievements gained and the remaining puzzling questions by applying dynamical systems theory to the linguistic inquiry. In particular, the book is divided into three parts, each one addressing one of the following topics: 1) Facing complexity in the right way: mathematics and complexity 2) Complexity and theory of language 3) From empirical observation to formal models: investigation of specific linguistic phenomena, like enunciation, deixis, or the meaning of the metaphorical phrases The application of complexity theory to describe cognitive phenomena is a recent and very promising trend in cognitive science. At the time when dynamical approaches triggered a paradigm shift in cognitive science some decade ago, the major topic of research were the challenges imposed by classical computational approaches dealing with the explanation of cognitive phenomena like consciousness, decision making and language. The target audience primarily comprises researchers and experts in the field but the book may also be beneficial for graduate and post-graduate students who want to enter the field.
This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.
The book includes articles from eminent international scientists discussing a wide spectrum of topics of current importance in mathematics and statistics and their applications. It presents state-of-the-art material along with a clear and detailed review of the relevant topics and issues concerned. The topics discussed include message transmission, colouring problem, control of stochastic structures and information dynamics, image denoising, life testing and reliability, survival and frailty models, analysis of drought periods, prediction of genomic profiles, competing risks, environmental applications and chronic disease control. It is a valuable resource for researchers and practitioners in the relevant areas of mathematics and statistics.
This book highlights the mathematical and physical properties of acoustical sources with singularities located in the complex plane and presents the application of such special elements to solve acoustical radiation and scattering problems. Sources whose origin lies in the complex plane are also solutions of the wave equation but possess different radiating properties as their counterparts with real positions. Such mathematical constructions are known in the fields of optics and electrodynamics, but they are not common in acoustical research. The objective of the book is to introduce this concept to acousticians and motivate them to engage themselves in further research and application of complex sources. Such sources are particularly useful to formulate Green's functions and related equivalent source and boundary element methods in half-spaces.
This book offers a theoretical description of topological matter in terms of effective field theories, and in particular topological field theories, focusing on two main topics: topological superconductors and topological insulators.Even though there is vast literature on these subjects, the book fills an important gap by providing a concise introduction to both topological order and symmetry-protected phases using a modern mathematical language, and developing the theoretical concepts by highlighting the physics and the physical properties of the systems. Further, it discusses in detail the topological interactions for topologically ordered matter, and the response to smooth external fields for symmetry protected matter. The book also covers more specialized topics that cannot be found elsewhere. Specifically, the response of superconductors to geometry, including the newly discovered geo-Meissner effect; and a correction to the usual Meissner effect, only present in the topologically interesting chiral superconductors.
This book introduces the basic fundamentals, models, emulators and analyses of mem-elements in the circuit theory with applications. The book starts reviewing the literature on mem-elements, models and their recent applications. It presents mathematical models, numerical results, circuit simulations, and experimental results for double-loop hysteresis behavior of mem-elements. The authors introduce a generalized memristor model in the fractional-order domain under different input and different designs for emulator-based mem-elements, with circuit and experimental results. The basic concept of memristive-based relaxation-oscillators in the circuit theory is also covered. The reader will moreover find in this book information on memristor-based multi-level digital circuits, memristor-based multi-level multiplier and memcapacitor-based oscillators and synaptic circuits.
This work provides a convincing motivation for and introduction to magnon-based computing. The challenges faced by the conventional semiconductor-transistor-based computing industry are contrasted with the many exciting avenues for developing spin waves (or magnons) as a complementary technology wherein information can be encoded, transmitted, and operated upon: essential ingredients for any computing paradigm. From this general foundation, one particular operation is examined: phase conjugation via four-wave-mixing (FWM). The author constructs an original theory describing the generation of a phase conjugate mirror with the remarkable property that any incident spin wave will be reflected back along the same direction of travel. After establishing a theoretical framework, the careful design of the experiment is presented, followed by the demonstration of a magnetic phase conjugate mirror using four-wave mixing for the first time. The thesis concludes with an investigation into the unexpected fractal behaviour observed arising from the phase conjugate mirror - a result that is testament to the richness and vibrancy of these highly nonlinear spin wave systems.
This work is concerned with combinatorial aspects arising in the theory of exactly solvable models and representation theory. Recent developments in integrable models reveal an unexpected link between representation theory and statistical mechanics through combinatorics. For example, Young tableaux, which describe the basis of irreducible representations, appear in the Bethe Ansatz method in quantum spin chains as labels for the eigenstates for Hamiltonians. Taking into account the various criss-crossing among mathematical subject, Physical Combinatorics presents new results and exciting ideas from three viewpoints; representation theory, integrable models, and combinatorics. This volume will be of interest to mathematical physicists and graduate students in the the above-mentioned fields. Contributors to the volume: T.H. Baker, O. Foda, G. Hatayama, Y. Komori, A. Kuniba, T. Nakanishi, M. Okado, A. Schilling, J. Suzuki, T. Takagi, D. Uglov, O. Warnaar, T.A. Welsh, A. Zabrodin
The application of mathematical concepts has proven to be beneficial within a number of different industries. In particular, these concepts have created significant developments in the engineering field. Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics is an authoritative reference source for the latest scholarly research on the use of applied mathematics to enhance the current trends and productivity in mechanical engineering. Highlighting theoretical foundations, real-world cases, and future directions, this book is ideally designed for researchers, practitioners, professionals, and students of mechatronics and mechanical engineering.
This book examines the digital transformation of identity in the age of artificial intelligence. It articulates the nature of identity of human beings, based on cutting-edge knowledge in the field of AI and big-data sciences, and discusses identity by drawing on comprehensive investigations in digital social sciences and exploring wider disciplines related to philosophy, ethics, sociology, STS, computer sciences, engineering, and medical sciences. Reviewing contemporary conditions proliferated by advanced technological trends and unveiling social mechanisms of human identity, this book appeals to undergraduate and graduate students as well as academic researchers.
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
This thesis presents the first isotope-shift measurement of bound-electron g-factors of highly charged ions and determines the most precise value of the electron mass in atomic mass units, which exceeds the value in the literature by a factor of 13. As the lightest fundamental massive particle, the electron is one of nature's few central building blocks. A precise knowledge of its intrinsic properties, such as its mass, is mandatory for the most accurate tests in physics - the Quantum Electrodynamics tests that describe one of the four established fundamental interactions in the universe. The underlying measurement principle combines a high-precision measurement of the Larmor-to-cyclotron frequency ratio on a single hydrogen-like carbon ion studied in a Penning trap with very accurate calculations of the so-called bound-electron g-factor. For the isotope-shift measurement, the bound-electron g-factors of two lithium-like calcium isotopes have been measured with relative uncertainties of a few 10^{-10}, constituting an as yet unrivaled level of precision for lithium-like ions.
It is not intuitive to accept that there exists a link between quantum physical systems and cognitive systems. However, recent research has shown that cognitive systems and collective (social) systems, including biology, exhibit uncertainty which can be successfully modelled with quantum probability. The use of such probability allows for the modelling of situations which typically violate the laws of classical probability. The Palgrave Handbook of Quantum Models in Social Science is is a unique volume that brings together contributions from leading experts on key topics in this new and emerging field. Completely self-contained, it begins with an introductory section which gathers all the fundamental notions required to be able to understand later chapters. The handbook then moves on to address some of the latest research and applications for quantum methods in social science disciplines, including economics, politics and psychology. It begins with the issue of how the quantum mechanical framework can be applied to economics. Chapters devoted to this topic range from how Fisher information can be argued to play a role in economics, to the foundations and application of quantum game theory. The handbook then progresses in considering how belief states can be updated with the theory of quantum measurements (and also with more general methods). The practical use of the Hilbert space (and Fock space) in decision theory is then introduced, and open quantum systems are also considered. The handbook also treats a model of neural oscillators that reproduces some of the features of quantum cognition. Other contributions delve into causal reasoning using quantum Bayes nets and the role of quantum probability in modelling so called affective evaluation. The handbook is rounded off with two chapters which discuss the grand challenges which lie ahead of us. How can the quantum formalism be justified in social science and is the traditional quantum formalism too restrictive? Finally, a question is posed: whether there is a necessary role for quantum mathematical models to go beyond physics. This book will bring the latest and most cutting edge research on quantum theory to social science disciplines. Students and researchers across the discipline, as well as those in the fields of physics and mathematics will welcome this important addition to the literature.
This book examines discrete dynamical systems with memory-nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
This book serves as a self-contained reference source for engineers, materials scientists, and physicists with an interest in relaxation phenomena. It is made accessible to students and those new to the field by the inclusion of both elementary and advanced math techniques, as well as chapter opening summaries that cover relevant background information and enhance the book's pedagogical value. These summaries cover a wide gamut from elementary to advanced topics. The book is divided into three parts. The opening part, on mathematics, presents the core techniques and approaches. Parts II and III then apply the mathematics to electrical relaxation and structural relaxation, respectively. Part II discusses relaxation of polarization at both constant electric field (dielectric relaxation) and constant displacement (conductivity relaxation), topics that are not often discussed together. Part III primarily discusses enthalpy relaxation of amorphous materials within and below the glass transition temperature range. It takes a practical approach inspired by applied mathematics in which detailed rigorous proofs are eschewed in favor of describing practical tools that are useful to scientists and engineers. Derivations are however given when these provide physical insight and/or connections to other material. A self-contained reference on relaxation phenomena Details both the mathematical basis and applications For engineers, materials scientists, and physicists
This edited volume presents examples of social science research projects that employ new methods of quantitative analysis and mathematical modeling of social processes. This book presents the fascinating areas of empirical and theoretical investigations that use formal mathematics in a way that is accessible for individuals lacking extensive expertise but still desiring to expand their scope of research methodology and add to their data analysis toolbox. Mathematical Modeling of Social Relationships professes how mathematical modeling can help us understand the fundamental, compelling, and yet sometimes complicated concepts that arise in the social sciences. This volume will appeal to upper-level students and researchers in a broad area of fields within the social sciences, as well as the disciplines of social psychology, complex systems, and applied mathematics.
This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure-volume-temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure-temperature phase diagrams of aluminium and a model binary alloy.
This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.
Parallel CFD 2000, the Twelfth in an International series of
meetings featuring computational fluid dynamics research on
parallel computers, was held May 22-25, 2000 in Trondheim, Norway.
This is the first monograph dedicated entirely to problems of stability and chaotic behaviour in planetary systems and its subsystems. The author explores the three rapidly developing interplaying fields of resonant and chaotic dynamics of Hamiltonian systems, the dynamics of Solar system bodies, and the dynamics of exoplanetary systems. The necessary concepts, methods and tools used to study dynamical chaos (such as symplectic maps, Lyapunov exponents and timescales, chaotic diffusion rates, stability diagrams and charts) are described and then used to show in detail how the observed dynamical architectures arise in the Solar system (and its subsystems) and in exoplanetary systems. The book concentrates, in particular, on chaotic diffusion and clearing effects. The potential readership of this book includes scientists and students working in astrophysics, planetary science, celestial mechanics, and nonlinear dynamics.
This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions. The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussion of extremely floppy molecules, which are not describable in the framework of traditional theories. The book introduces a fundamentally new approach to describing the molecular dynamics of these molecules - the super-rotor model, which is based on a five-dimensional symmetry that has never been observed in molecules before. By applying the super-rotor theory to the prototype of floppy molecules, protonated methane, this model can consistently predict the symmetry and energy of low-energy states, which were characterized experimentally only a few years ago. The theoretical predictions agree with the experimental results, which makes the prospect of further developing the super-rotor theory and applying it to other molecules a promising one. In the final section, the book also covers the topic of ultrafast rotations, where usual quantum calculations reach their natural limits. A semi-classical method for determining rotational energies, developed in the early 1990s, is shown to be attachable to quantum calculations of the vibrational states. This new combined method is suitable for efficiently calculating ro-vibrational energies, even for molecular states with large angular momentum.
This monograph develops a framework for time-optimal control problems, focusing on minimal and maximal time-optimal controls for linear-controlled evolution equations. Its use in optimal control provides a welcome update to Fattorini's work on time-optimal and norm-optimal control problems. By discussing the best way of representing various control problems and equivalence among them, this systematic study gives readers the tools they need to solve practical problems in control. After introducing preliminaries in functional analysis, evolution equations, and controllability and observability estimates, the authors present their time-optimal control framework, which consists of four elements: a controlled system, a control constraint set, a starting set, and an ending set. From there, they use their framework to address areas of recent development in time-optimal control, including the existence of admissible controls and optimal controls, Pontryagin's maximum principle for optimal controls, the equivalence of different optimal control problems, and bang-bang properties. This monograph will appeal to researchers and graduate students in time-optimal control theory, as well as related areas of controllability and dynamic programming. For ease of reference, the text itself is self-contained on the topic of time-optimal control. Frequent examples throughout clarify the applications of theorems and definitions, although experience with functional analysis and differential equations will be useful. |
![]() ![]() You may like...
Depression in New Mothers - Causes…
Kathleen Kendall-Tackett
Hardcover
R4,310
Discovery Miles 43 100
Ratels Aan Die Lomba - Die Storie Van…
Leopold Scholtz
Paperback
![]()
|