![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
Data-Based Controller Design presents a comprehensive analysis of data-based control design. It brings together the different data-based design methods that have been presented in the literature since the late 1990's. To the best knowledge of the author, these data-based design methods have never been collected in a single text, analyzed in depth or compared to each other, and this severely limits their widespread application. In this book these methods will be presented under a common theoretical framework, which fits also a large family of adaptive control methods: the MRAC (Model Reference Adaptive Control) methods. This common theoretical framework has been developed and presented very recently. The book is primarily intended for PhD students and researchers - senior or junior - in control systems. It should serve as teaching material for data-based and adaptive control courses at the graduate level, as well as for reference material for PhD theses. It should also be useful for advanced engineers willing to apply data-based design. As a matter of fact, the concepts in this book are being used, under the author's supervision, for developing new software products in a automation company. The book will present simulation examples along the text. Practical applications of the concepts and methodologies will be presented in a specific chapter.
The main concern of the book is analysis of biological processes, the final stage of which is mathematical modeling, i.e. quantitative presentation of the processes in rigorous mathematical terms. It is designated for non-mathematicians. Mathematical models can be compared with experimental data thus verifying the validity of the models and finally of the initial assumptions and verbal descriptions of the processes. The models (usually in the form of mathematical equations) are achieved painlessly via the schemes summarising verbal description of what is known concerning the processes. To solve the equations computer software is used. The step-by-step analysis leads to quite sophisticated models some of them being original. The book helps the reader to develop more general approach to the problems. It may be useful for experienced readers as well.
"Mathematical Concepts and Methods in Modern Biology" offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology. Designed around the principles of project-based learning and
problem-solving, the book considers biological topics such as
neuronal networks, plant population growth, metabolic pathways, and
phylogenetic tree reconstruction. The mathematical modeling tools
brought to bear on these topics include Boolean and ordinary
differential equations, projection matrices, agent-based modeling
and several algebraic approaches. Heavy computation in some of the
examples is eased by the use of freely available open-source
software.
This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as: Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control, Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications, Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.
This volume developed from a Workshop on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding which was held at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota, from June 1-5, 2010. The subject matter ranged widely from observational data to theoretical mechanics, and reflected the broad scope of the workshop. In both the prepared presentations and in the informal discussions, the workshop engaged exchanges across disciplines and invited a lively interaction between modelers and observers. The articles in this volume were invited and fully refereed. They provide a representative if necessarily incomplete account of the field of natural locomotion during a period of rapid growth and expansion. The papers presented at the workshop, and the contributions to the present volume, can be roughly divided into those pertaining to swimming on the scale of marine organisms, swimming of microorganisms at low Reynolds numbers, animal flight, and sliding and other related examples of locomotion.
This book introduces readers to a set of powerful and extremely flexible modelling techniques, starting at "square one" and continuing with carefully chosen applications. Some of these applications of methodology include insect oviposition behavior, overwinter survival of birds and fish, avian migration, resource management, conservation biology, agroecology, and human behaviour. This book also explains how to construct, test, and use dynamic state variable models in a wide range of contexts in evolutionary ecology. And its complete and up-to-date coverage allows readers to immediately begin using the described techniques. Dynamic State Variable Models in Ecology is designed for self-instruction or for use in upper division undergraduate or graduate courses. It is ideal for students and scientists interested in behaviour, ecology, anthropology, conservation biology, and related fields.
The book integrates theoretical analysis, numerical simulation and modeling approaches for the treatment of singular phenomena. The projects covered focus on actual applied problems, and develop qualitatively new and mathematically challenging methods for various problems from the natural sciences. Ranging from stochastic and geometric analysis over nonlinear analysis and modelling to numerical analysis and scientific computation, the book is divided into the three sections: A) Scaling limits of diffusion processes and singular spaces, B) Multiple scales in mathematical models of materials science and biology and C) Numerics for multiscale models and singular phenomena. Each section addresses the key aspects of multiple scales and model hierarchies, singularities and degeneracies, and scaling laws and self-similarity.
The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any "a priori" assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in "H"1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after "ad hoc" scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Karman equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.
This book offers a self-study program on how mathematics, computer science and science can be profitably and seamlessly intertwined. This book focuses on two variable ODE models, both linear and nonlinear, and highlights theoretical and computational tools using MATLAB to explain their solutions. It also shows how to solve cable models using separation of variables and the Fourier Series.
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.
The author develops a new perturbative formalism of non-equilibrium thermal quantum field theory for non-homogeneous backgrounds. As a result of this formulation, the author is able to show how so-called pinch singularities can be removed, without resorting to ad hoc prescriptions, or effective resummations of absorptive effects. Thus, the author arrives at a diagrammatic approach to non-equilibrium field theory, built from modified Feynman rules that are manifestly time-dependent from tree level. This new formulation provides an alternative framework in which to derive master time evolution equations for physically meaningful particle number densities, which are valid to all orders in perturbation theory and to all orders in gradient expansion. Once truncated in a loop-wise sense, these evolution equations capture non-equilibrium dynamics on all time-scales, systematically describing energy-violating processes and the non-Markovian evolution of memory effects
This book assesses the state-of-the-art in computational fluid dynamics (CFD) applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Gothenburg 2010 Workshop. It presents ship hull test cases, experimental data and submitted computational methods, conditions, grids and results. Analysis is made of errors for global (resistance, sinkage and trim and self-propulsion) and local flow (wave elevations and mean velocities and turbulence) variables, including standard deviations for global variables and propeller modeling for self-propulsion. The effects of grid size and turbulence models are evaluated for both global and local flow variables. Detailed analysis is made of turbulence modeling capabilities for capturing local flow physics. Errors are also analyzed for head-wave seakeeping and forward speed diffraction, and calm-water forward speed-roll decay. Resistance submissions are used to evaluate the error and uncertainty by means of a systematic verification and validation (V&V) study along with statistical investigations. Post-workshop experimental and computational studies are conducted and analyzed for evaluation of facility biases and to draw more concrete conclusions regarding the most reliable turbulence model, appropriate numerical methods and grid resolution requirements, respectively.
This book presents mathematical models of mob control with threshold (conformity) collective decision-making of the agents. Based on the results of analysis of the interconnection between the micro- and macromodels of active network structures, it considers the static (deterministic, stochastic and game-theoretic) and dynamic (discrete- and continuous-time) models of mob control, and highlights models of informational confrontation. Many of the results are applicable not only to mob control problems, but also to control problems arising in social groups, online social networks, etc. Aimed at researchers and practitioners, it is also a valuable resource for undergraduate and postgraduate students as well as doctoral candidates specializing in the field of collective behavior modeling.
Exploring complex and intelligent analytical and mathematical methods, this book examines how different approaches can be used to optimize program management in the construction industry. It presents an in-depth study of the different program management methods, ranging from simple decision-making techniques and statistics analysis to the more complex linear programming and demonstrates how knowledge-base systems and genetic algorithms can be used to optimize resources and meet time, budget and quality criteria. It addresses topics including decision-making principles, planning and scheduling, mathematical forecasting models, optimization techniques programming and artificial intelligence techniques. Providing a valuable resource for anyone managing multiple projects in the construction industry, this book is intended for civil and construction engineering students, project managers, construction managers and senior engineers.
The book will provide an exhaustive and clear explanation of how Statistics, Mathematics and Informatics have been used in cancer research, and seeks to help cancer researchers in achieving their objectives. To do so, state-of-the-art Biostatistics, Biomathematics and Bioinformatics methods will be described and discussed in detail through illustrative and capital examples taken from cancer research work already published. The book will provide a guide for cancer researchers in using Statistics, Mathematics and Informatics, clarifying the contribution of these logical sciences to the study of cancer, thoroughly explaining their procedures and methods, and providing criteria to their appropriate use.
Ge and III-V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials - like graphene and MoS_2 - are also envisioned to replace Si in the future. This thesis is devoted to the first-principles modeling of the vibrational properties of these novel channel materials. The first part of the thesis focuses on the vibrational properties of various oxides on Ge, making it possible to identify the vibrational signature of specific defects which could hamper the proper functioning of MOSFETs. The second part of the thesis reports on the electronic and vibrational properties of novel 2D materials like silicene and germanene, the Si and Ge 2D counterparts of graphene. The interaction of these 2D materials with metallic and non-metallic substrates is investigated. It was predicted, for the first time, and later experimentally confirmed, that silicene could be grown on a non-metallic template like MoS_2, a breakthrough that could open the door to the possible use of silicene in future nanoelectronic devices.
Algebraic & geometry methods have constituted a basic background and tool for people working on classic block coding theory and cryptography. Nowadays, new paradigms on coding theory and cryptography have arisen such as: Network coding, S-Boxes, APN Functions, Steganography and decoding by linear programming. Again understanding the underlying procedure and symmetry of these topics needs a whole bunch of non trivial knowledge of algebra and geometry that will be used to both, evaluate those methods and search for new codes and cryptographic applications. This book shows those methods in a self-contained form.
This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato's and Kepler's symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups and their unitary representations. In such a framework, time, position and spacetime is modeled by equivalence classes of symmetry groups. For a unification on this road, the quest is not for a final theory with a basic equation for basic particles, but for the basic operation group and its representations.
The proceedings from the eighth KMO conference represent the findings of this international meeting which brought together researchers and developers from industry and the academic world to report on the latest scientific and technical advances on knowledge management in organizations. This conference provided an international forum for authors to present and discuss research focused on the role of knowledge management for innovative services in industries, to shed light on recent advances in social and big data computing for KM as well as to identify future directions for researching the role of knowledge management in service innovation and how cloud computing can be used to address many of the issues currently facing KM in academia and industrial sectors.
The book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practicing professionals. Only the very simplest elements are considered, mainly two-dimensional three-noded constant strain triangles, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, finite element analysis of biharmonic problems (plane stress and plane strain). Full FORTRAN programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the FORTRAN language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use on desktops and laptops. Unlike the first edition, the new edition has Problems (with Solutions) at the end of each chapter. Electronic copies of the programs should be freely available for download from the internet.
This book contributes to better understand how lifestyle modulations can effectively halt the emergence and progression of human diseases. The book will allow the reader to gain a better understanding of the mechanisms by which the environment interferes with the bio-molecular regulatory processes underlying the emergence and progression of complex diseases, such as cancer. Focusing on key and early cellular bio-molecular events giving rise to the emergence of degenerative chronic disease, it builds on previous experience on the development of multi-cellular organisms, to propose a mathematical and computer based framework that allows the reader to analyze the complex interplay between bio-molecular processes and the (micro)-environment from an integrative, mechanistic, quantitative and dynamical perspective. Taking the wealth of empirical evidence that exists it will show how to build and analyze models of core regulatory networks involved in the emergence and progression of chronic degenerative diseases, using a bottom-up approach.
If your students struggle with standard deviation or statistical tests, this is the book for them. This textbook companion will help improve their essential maths skills for psychology, whichever awarding body specification you're following. You can use it throughout the course, whenever you feel they need some extra help. - Develop understanding of both maths and psychology with all worked examples and questions within a psychology context - Improve confidence with a step-by-step approach to every maths skill - Measure progress with guided and non-guided questions - Understand misconceptions with full worked solutions to every question - Feel confident in expert guidance from experienced teacher and examiner Molly Marshall, reviewed by Dorothy Coombs, Editor of ATP Today, former Chair of the Association for the Teaching of Psychology and experienced biology, psychology and FSMQ Statistics teacher
Summability is a mathematical topic with a long tradition and with many applications in, e.g., function theory, number theory, and stochastics. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Lecturers, graduate students, and researchers working in summability and related topics will find this a useful introduction and reference work.
The present volume contains invited talks of 11th biennial conference on "Emerging Mathematical Methods, Models and Algorithms for Science and Technology". The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.
This book is concerned with recent advances in fitness landscapes. The concept of fitness landscapes originates from theoretical biology and refers to a framework for analysing and visualizing the relationships between genotypes, phenotypes and fitness. These relationships lay at the centre of attempts to mathematically describe evolutionary processes and evolutionary dynamics. The book addresses recent advances in the understanding of fitness landscapes in evolutionary biology and evolutionary computation. In the volume, experts in the field of fitness landscapes present these findings in an integrated way to make it accessible to a number of audiences: senior undergraduate and graduate students in computer science, theoretical biology, physics, applied mathematics and engineering, but also researcher looking for a reference or/and entry point into using fitness landscapes for analysing algorithms. Also practitioners wanting to employ fitness landscape techniques for evaluating bio- and nature-inspired computing algorithms can find valuable material in the book. For teaching proposes, the book could also be used as a reference handbook. |
You may like...
Practical Industrial Data Networks…
Steve Mackay, Edwin Wright, …
Paperback
R1,452
Discovery Miles 14 520
Practical Industrial Data Communications…
Deon Reynders, Steve Mackay, …
Paperback
R1,452
Discovery Miles 14 520
|