![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
This book highlights a major advance in low-energy scattering theory: the Multi-Channel Algebraic Scattering (MCAS) theory, which represents an attempt to unify structure and reaction theory. It solves the Lippmann-Schwinger equations for low-energy nucleon-nucleus and alpha-nucleus scattering in momentum space, allowing both the bound and scattering states in the compound nucleus formed to be described. Results of various cases are presented and discussed.
This is a handbook of Gamma-convergence, which is a theoretical tool used to study problems in Applied Mathematics where varying parameters are present, with many applications that range from Mechanics to Computer Vision. The book is directed to Applied Mathematicians in all fields and to Engineers with a theoretical background.
This contributed volume presents an overview of concepts, methods, and applications used in several quantitative areas of drug research, development, and marketing. Chapters bring together the theories and applications of various disciplines, allowing readers to learn more about quantitative fields, and to better recognize the differences between them. Because it provides a thorough overview, this will serve as a self-contained resource for readers interested in the pharmaceutical industry, and the quantitative methods that serve as its foundation. Specific disciplines covered include: Biostatistics Pharmacometrics Genomics Bioinformatics Pharmacoepidemiology Commercial analytics Operational analytics Quantitative Methods in Pharmaceutical Research and Development is ideal for undergraduate students interested in learning about real-world applications of quantitative methods, and the potential career options open to them. It will also be of interest to experts working in these areas.
Although the problem of stability and bifurcation is well
understood in Mechanics, very few treatises have been devoted to
stability and bifurcation analysis in dissipative media, in
particular with regard to present and fundamental problems in Solid
Mechanics such as plasticity, fracture and contact mechanics.
Stability and Nonlinear Solid Mechanics addresses this lack of
material, and proposes to the reader not only a unified
presentation of nonlinear problems in Solid Mechanics, but also a
complete and unitary analysis on stability and bifurcation problems
arising within this framework. Main themes include:
This book removes the mystery and pressure from calculations by equipping readers with the tools they need to understand calculations and how they work. This is done by using straight-forward language and showing fully worked out, rig-based examples throughout. The book comprises of mini lessons which are never more than two pages long and a complete lesson is always in view when the book is open in front of you. Lessons progress in a logical manner and once the book is finished, the reader is ready for any calculations that could be encountered at well control school. It is a great tool for rig crew members who are afraid of calculations or have not done any math since school. I found it easy to follow with clear explanations and it flowed from topic to topic. A definite addition to the rig crews training toolbox. Malcolm Lodge (at the time of writing Technical Director of the Well Control Institute)
This book computes the first- and second-order derivative matrices of skew ray and optical path length, while also providing an important mathematical tool for automatic optical design. This book consists of three parts. Part One reviews the basic theories of skew-ray tracing, paraxial optics and primary aberrations - essential reading that lays the foundation for the modeling work presented in the rest of this book. Part Two derives the Jacobian matrices of a ray and its optical path length. Although this issue is also addressed in other publications, they generally fail to consider all of the variables of a non-axially symmetrical system. The modeling work thus provides a more robust framework for the analysis and design of non-axially symmetrical systems such as prisms and head-up displays. Lastly, Part Three proposes a computational scheme for deriving the Hessian matrices of a ray and its optical path length, offering an effective means of determining an appropriate search direction when tuning the system variables in the system design process.
This monograph presents urban simulation methods that help in better understanding urban dynamics. Over historical times, cities have progressively absorbed a larger part of human population and will concentrate three quarters of humankind before the end of the century. This "urban transition" that has totally transformed the way we inhabit the planet is globally understood in its socio-economic rationales but is less frequently questioned as a spatio-temporal process. However, the cities, because they are intrinsically linked in a game of competition for resources and development, self organize in "systems of cities" where their future becomes more and more interdependent. The high frequency and intensity of interactions between cities explain that urban systems all over the world exhibit large similarities in their hierarchical and functional structure and rather regular dynamics. They are complex systems whose emergence, structure and further evolution are widely governed by the multiple kinds of interaction that link the various actors and institutions investing in cities their efforts, capital, knowledge and intelligence. Simulation models that reconstruct this dynamics may help in better understanding it and exploring future plausible evolutions of urban systems. This would provide better insight about how societies can manage the ecological transition at local, regional and global scales. The author has developed a series of instruments that greatly improve the techniques of validation for such models of social sciences that can be submitted to many applications in a variety of geographical situations. Examples are given for several BRICS countries, Europe and United States. The target audience primarily comprises research experts in the field of urban dynamics, but the book may also be beneficial for graduate students.
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
This book highlights the remarkable importance of special functions, operational calculus, and variational methods. A considerable portion of the book is dedicated to second-order partial differential equations, as they offer mathematical models of various phenomena in physics and engineering. The book provides students and researchers with essential help on key mathematical topics, which are applied to a range of practical problems. These topics were chosen because, after teaching university courses for many years, the authors have found them to be essential, especially in the contexts of technology, engineering and economics. Given the diversity topics included in the book, the presentation of each is limited to the basic notions and results of the respective mathematical domain. Chapter 1 is devoted to complex functions. Here, much emphasis is placed on the theory of holomorphic functions, which facilitate the understanding of the role that the theory of functions of a complex variable plays in mathematical physics, especially in the modeling of plane problems. In addition, the book demonstrates the importance of the theories of special functions, operational calculus, and variational calculus. In the last chapter, the authors discuss the basic elements of one of the most modern areas of mathematics, namely the theory of optimal control.
This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance.
This book explores internet applications in which a crucial role is played by classification, such as spam filtering, recommender systems, malware detection, intrusion detection and sentiment analysis. It explains how such classification problems can be solved using various statistical and machine learning methods, including K nearest neighbours, Bayesian classifiers, the logit method, discriminant analysis, several kinds of artificial neural networks, support vector machines, classification trees and other kinds of rule-based methods, as well as random forests and other kinds of classifier ensembles. The book covers a wide range of available classification methods and their variants, not only those that have already been used in the considered kinds of applications, but also those that have the potential to be used in them in the future. The book is a valuable resource for post-graduate students and professionals alike.
The best laboratory math text on the market for almost 20 years, this title covers both the general principles of mathematics and specific equations, formulas, and calculations used for laboratory testing. It provides simple, easily understood explanations of calculations commonly used in clinical and biological laboratories. Contains more than 1000 practice problems.
These 22 papers on control of nonlinear partial differential equations highlight the area from a wide variety of viewpoints. They comprise theoretical considerations such as optimality conditions, relaxation, or stabilizability theorems, as well as the development and evaluation of new algorithms. A significant part of the volume is devoted to applications in engineering, continuum mechanics and population biology.
Based on the third International Conference on Symmetries, Differential Equations and Applications (SDEA-III), this proceedings volume highlights recent important advances and trends in the applications of Lie groups, including a broad area of topics in interdisciplinary studies, ranging from mathematical physics to financial mathematics. The selected and peer-reviewed contributions gathered here cover Lie theory and symmetry methods in differential equations, Lie algebras and Lie pseudogroups, super-symmetry and super-integrability, representation theory of Lie algebras, classification problems, conservation laws, and geometrical methods. The SDEA III, held in honour of the Centenary of Noether's Theorem, proven by the prominent German mathematician Emmy Noether, at Istanbul Technical University in August 2017 provided a productive forum for academic researchers, both junior and senior, and students to discuss and share the latest developments in the theory and applications of Lie symmetry groups. This work has an interdisciplinary appeal and will be a valuable read for researchers in mathematics, mechanics, physics, engineering, medicine and finance.
This is the first book to introduce the irrational elliptic function series, providing a theoretical treatment for the smooth and discontinuous system and opening a new branch of applied mathematics. The discovery of the smooth and discontinuous (SD) oscillator and the SD attractors discussed in this book represents a further milestone in nonlinear dynamics, following on the discovery of the Ueda attractor in 1961 and Lorenz attractor in 1963. This particular system bears significant similarities to the Duffing oscillator, exhibiting the standard dynamics governed by the hyperbolic structure associated with the stationary state of the double well. However, there is a substantial departure in nonlinear dynamics from standard dynamics at the discontinuous stage. The constructed irrational elliptic function series, which offers a way to directly approach the nature dynamics analytically for both smooth and discontinuous behaviours including the unperturbed periodic motions and the perturbed chaotic attractors without any truncation, is of particular interest. Readers will also gain a deeper understanding of the actual nonlinear phenomena by means of a simple mechanical model: the theory, methodology, and the applications in various interlinked disciplines of sciences and engineering. This book offers a valuable resource for researchers, professionals and postgraduate students in mechanical engineering, non-linear dynamics, and related areas, such as nonlinear modelling in various fields of mathematics, physics and the engineering sciences.
This book gathers the peer-reviewed proceedings of the 12th Annual Meeting of the Bulgarian Section of the Society for Industrial and Applied Mathematics, BGSIAM'17, held in Sofia, Bulgaria, in December 2017. The general theme of BGSIAM'17 was industrial and applied mathematics, with a particular focus on: high-performance computing, numerical methods and algorithms, analysis of partial differential equations and their applications, mathematical biology, control and uncertain systems, stochastic models, molecular dynamics, neural networks, genetic algorithms, metaheuristics for optimization problems, generalized nets, and Big Data.
The book focuses on the next fields of computer science: combinatorial optimization, scheduling theory, decision theory, and computer-aided production management systems. It also offers a quick introduction into the theory of PSC-algorithms, which are a new class of efficient methods for intractable problems of combinatorial optimization. A PSC-algorithm is an algorithm which includes: sufficient conditions of a feasible solution optimality for which their checking can be implemented only at the stage of a feasible solution construction, and this construction is carried out by a polynomial algorithm (the first polynomial component of the PSC-algorithm); an approximation algorithm with polynomial complexity (the second polynomial component of the PSC-algorithm); also, for NP-hard combinatorial optimization problems, an exact subalgorithm if sufficient conditions were found, fulfilment of which during the algorithm execution turns it into a polynomial complexity algorithm. Practitioners and software developers will find the book useful for implementing advanced methods of production organization in the fields of planning (including operative planning) and decision making. Scientists, graduate and master students, or system engineers who are interested in problems of combinatorial optimization, decision making with poorly formalized overall goals, or a multiple regression construction will benefit from this book.
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.
The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.
Frank Arntzenius presents a series of radical new ideas about the structure of space and time. Space, Time, and Stuff is an attempt to show that physics is geometry: that the fundamental structure of the physical world is purely geometrical structure. Along the way, he examines some non-standard views about the structure of spacetime and its inhabitants, including the idea that space and time are pointless, the idea that quantum mechanics is a completely local theory, the idea that antiparticles are just particles travelling back in time, and the idea that time has no structure whatsoever. The main thrust of the book, however, is that there are good reasons to believe that spaces other than spacetime exist, and that it is the existence of these additional spaces that allows one to reduce all of physics to geometry. Philosophy, and metaphysics in particular, plays an important role here: the assumption that the fundamental laws of physics are simple in terms of the fundamental physical properties and relations is pivotal. Without this assumption one gets nowhere. That is to say, when trying to extract the fundamental structure of the world from theories of physics one ignores philosophy at one's peril!
Written by leading experts, this book provides a clear and comprehensive survey of the "status quo" of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today's least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
This book discusses topics related to the topological structure and biological function of gene networks regulated by microRNAs. It focuses on analyzing the relation between topological structure and biological function, applying these theoretical results to gene networks involving microRNA, illustrating their biological mechanisms, and identifying the roles of microRNA in controlling various phenomena emerging from the networks. In addition, the book explains how to control the complex biological phenomena using mathematical tools and offers a new perspective on studying microRNA. It is a useful resource for graduate students and researchers who are working on or interested in microRNAs and gene network.
Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014. |
![]() ![]() You may like...
Mathematical Modelling - Education…
C Haines, P. Galbraith, …
Paperback
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R4,084
Discovery Miles 40 840
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,214
Discovery Miles 42 140
|