Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics
This book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variational equations. The book arose from lectures taught by the authors over many years and can be helpful in designing graduate courses for mathematically orientated students on electromagnetic wave propagation problems. The students should have some knowledge on vector analysis (curves, surfaces, divergence theorem) and functional analysis (normed spaces, Hilbert spaces, linear and bounded operators, dual space). Written in an accessible manner, topics are first approached with simpler scale Helmholtz Equations before turning to Maxwell Equations. There are examples and exercises throughout the book. It will be useful for graduate students and researchers in applied mathematics and engineers working in the theoretical approach to electromagnetic wave propagation.
This book presents a cross-disciplinary approach to smart grids, offering an invaluable basis for understanding their complexity and potential, and for discussing their technical, legal, economic, societal, psychological and security aspects. Smart grids are a complex phenomenon involving new, active roles for consumers and prosumers, novel social, political and cultural practices, advanced ICT, new markets, security of supply issues, the informational turn in energy, valuation of assets and investments, technological innovation and (de)regulation. Furthermore, smart grids offer new interfaces, in turn creating hybrid fields: with the increasing use of electric vehicles and electric transportation, smart grids represent the crossroads of energy and mobility. While the aim is to achieve more sustainable production, transportation and use of energy, the importance of smart grids actually has less to do with electricity, heat or gas, and far more with transforming the infrastructure needed to deliver energy, as well as the roles of its owners, operators and users. The immediate goal is to contribute positively to a sustainable world society. The chapters are revised and expanded texts based upon lectures delivered at the Groningen Energy Summer School 2014. Questions for further discussion at the end of each chapter highlight the key themes that emerge. The book offers an indispensable resource for researchers, professionals and companies in the power supply industry, and for students seeking to broaden and deepen their understanding of smart grids.
This book is offers a comprehensive overview of information theory and error control coding, using a different approach then in existed literature. The chapters are organized according to the Shannon system model, where one block affects the others. A relatively brief theoretical introduction is provided at the beginning of every chapter, including a few additional examples and explanations, but without any proofs. And a short overview of some aspects of abstract algebra is given at the end of the corresponding chapters. The characteristic complex examples with a lot of illustrations and tables are chosen to provide detailed insights into the nature of the problem. Some limiting cases are presented to illustrate the connections with the theoretical bounds. The numerical values are carefully selected to provide in-depth explanations of the described algorithms. Although the examples in the different chapters can be considered separately, they are mutually connected and the conclusions for one considered problem relate to the others in the book.
Evolutionary algorithms constitute a class of well-known algorithms, which are designed based on the Darwinian theory of evolution and Mendelian theory of heritage. They are partly based on random and partly based on deterministic principles. Due to this nature, it is challenging to predict and control its performance in solving complex nonlinear problems. Recently, the study of evolutionary dynamics is focused not only on the traditional investigations but also on the understanding and analyzing new principles, with the intention of controlling and utilizing their properties and performances toward more effective real-world applications. In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks. In fact, it includes more advanced complex networks and incorporates them with the CMLs (coupled map lattices), which are usually used for spatiotemporal complex systems simulation and analysis, based on the observation that chaos in CML can be controlled, so does evolution dynamics. All the chapter authors are, to the best of our knowledge, originators of the ideas mentioned above and researchers on evolutionary algorithms and chaotic dynamics as well as complex networks, who will provide benefits to the readers regarding modern scientific research on related subjects.
This book, on the general topic of hydroaerodynamics, investigates a number of exciting applications in this field, addressing specifically issues that allow seemingly paradoxical issues to be dealt with. The first part is devoted to the study of channel flows, in particular the lateral flow of a viscous and viscous-plastic liquid in a ring channel formed by coaxial cylinders. Specifically, the problem of dissipation of mechanical energy in channel flows of highly viscous liquids is addressed and solved. Furthermore, the mechanism leading to hydrodynamic erosion in intra-field pipelines (known as "channelized effect") is identified. Subsequently, a theory for channel flows with mass transfer through porous walls is developed. In the second part, viscous liquid free flows (jets) are investigated. In particular, a dispersion law for turbulent flow is derived and the existence of dynamic invariance in wake flows of variable density is demonstrated. The third part presents new insights from both theoretical and experimental research into concentrated vortex structure formation and development. The conditions for the existence of Taylor-Goertler vortices are determined and the mechanism for their formation is described. Last but not least, the theory of vortex rings, a particularly interesting problem in hydroaerodynamics, is introduced in the last section of this book. Care has been taken, when selecting original theoretical problems of interest, to make the link with related topics in the published literature. At the same time, all experimental research described in this book is given a meaningful physical interpretation and corroborated by suitable theoretical models and computations.
This book illustrates how to use description logic-based formalisms to their full potential in the creation, indexing, and reuse of multimedia semantics. To do so, it introduces researchers to multimedia semantics by providing an in-depth review of state-of-the-art standards, technologies, ontologies, and software tools. It draws attention to the importance of formal grounding in the knowledge representation of multimedia objects, the potential of multimedia reasoning in intelligent multimedia applications, and presents both theoretical discussions and best practices in multimedia ontology engineering. Readers already familiar with mathematical logic, Internet, and multimedia fundamentals will learn to develop formally grounded multimedia ontologies, and map concept definitions to high-level descriptors. The core reasoning tasks, reasoning algorithms, and industry-leading reasoners are presented, while scene interpretation via reasoning is also demonstrated. Overall, this book offers readers an essential introduction to the formal grounding of web ontologies, as well as a comprehensive collection and review of description logics (DLs) from the perspectives of expressivity and reasoning complexity. It covers best practices for developing multimedia ontologies with formal grounding to guarantee decidability and obtain the desired level of expressivity while maximizing the reasoning potential. The capabilities of such multimedia ontologies are demonstrated by DL implementations with an emphasis on multimedia reasoning applications.
This proceedings volume gathers a selection of outstanding research papers presented at the third Conference on Isogeometric Analysis and Applications, held in Delft, The Netherlands, in April 2018. This conference series, previously held in Linz, Austria, in 2012 and Annweiler am Trifels, Germany, in 2014, has created an international forum for interaction between scientists and practitioners working in this rapidly developing field. Isogeometric analysis is a groundbreaking computational approach that aims to bridge the gap between numerical analysis and computational geometry modeling by integrating the finite element method and related numerical simulation techniques into the computer-aided design workflow, and vice versa. The methodology has matured over the last decade both in terms of our theoretical understanding, its mathematical foundation and the robustness and efficiency of its practical implementations. This development has enabled scientists and practitioners to tackle challenging new applications at the frontiers of research in science and engineering and attracted early adopters for this his novel computer-aided design and engineering technology in industry. The IGAA 2018 conference brought together experts on isogeometric analysis theory and application, share their insights into challenging industrial applications and to discuss the latest developments as well as the directions of future research and development that are required to make isogeometric analysis an established mainstream technology.
This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.
This is a textbook which gradually introduces the student to the statistical mechanical study of the different phases of matter and to the phase transitions between them. Throughout, only simple models of both ordinary and soft matter are used but these are studied in full detail. The subject is developed in a pedagogical manner, starting from the basics, going from the simple ideal systems to the interacting systems, and ending with the more modern topics. The textbook provides the student with a complete overview, intentionally at an introductory level, of the theory of phase transitions. All equations and deductions are included.
This book is an elementary introduction to the basic concepts of financial mathematics with a central focus on discrete models and an aim to demonstrate simple but widely used financial derivatives for managing market risks. Only a basic knowledge of probability, real analysis, ordinary differential equations, linear algebra and some common sense are required to utilise this book. Financial mathematics is an application of advanced mathematical and statistical methods to financial management and markets, with a main objective to quantify and hedge risks. Since the book aims to present the basics of financial mathematics to the reader, only essential elements of probability and stochastic analysis are given to explain ideas on derivative pricing and hedging. To keep the reader intrigued and motivated, the book has a sandwich structure: Probability and stochastics are given on the spot, at places where mathematics can almost immediately be illustrated by an application to finance. The first part of the book introduces one of the main principles in finance - no arbitrage pricing.It also introduces main financial instruments such as forward and futures contracts, bonds and swaps, and options. This part is not mathematical. The second part deals with pricing and hedging of European- and American-type options in the discrete time setting. In addition, the concept of complete and incomplete markets is discussed. Elementary probability is briefly revised and discrete-time - discrete-space stochastic processes used in financial modelling are considered. The third part discusses stochastic analysis and introduces the Wiener process, Ito integrals, and stochastic differential equations. The main feature of this final part of the book is the famous Black - Scholes formula for pricing European options. Some guidance for further study of this exciting and rapidly changing subject is given in the last chapter. The book has approximately 100 exercises, for which most solutions have been provided.
Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.
This collection of peer-reviewed workshop papers provides comprehensive coverage of cutting-edge research into topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The book also addresses core research challenges such as the representation of large and complex datasets, and integrating numerical methods with robust combinatorial algorithms. In keeping with the focus of the TopoInVis 2017 Workshop, the contributions reflect the latest advances in finding experimental solutions to open problems in the sector. They provide an essential snapshot of state-of-the-art research, helping researchers to keep abreast of the latest developments and providing a basis for future work. Gathering papers by some of the world's leading experts on topological techniques, the book represents a valuable contribution to a field of growing importance, with applications in disciplines ranging from engineering to medicine.
This book presents the mathematical background underlying security modeling in the context of next-generation cryptography. By introducing new mathematical results in order to strengthen information security, while simultaneously presenting fresh insights and developing the respective areas of mathematics, it is the first-ever book to focus on areas that have not yet been fully exploited for cryptographic applications such as representation theory and mathematical physics, among others. Recent advances in cryptanalysis, brought about in particular by quantum computation and physical attacks on cryptographic devices, such as side-channel analysis or power analysis, have revealed the growing security risks for state-of-the-art cryptographic schemes. To address these risks, high-performance, next-generation cryptosystems must be studied, which requires the further development of the mathematical background of modern cryptography. More specifically, in order to avoid the security risks posed by adversaries with advanced attack capabilities, cryptosystems must be upgraded, which in turn relies on a wide range of mathematical theories. This book is suitable for use in an advanced graduate course in mathematical cryptography, while also offering a valuable reference guide for experts.
Dynamical System Synchronization (DSS) meticulously presents for the first time the theory of dynamical systems synchronization based on the local singularity theory of discontinuous dynamical systems. The book details the sufficient and necessary conditions for dynamical systems synchronizations, through extensive mathematical expression. Techniques for engineering implementation of DSS are clearly presented compared with the existing techniques.
The basics of computer algebra and the language of Mathematica are described. This title will lead toward an understanding of Mathematica that allows the reader to solve problems in physics, mathematics, and chemistry. Mathematica is the most widely used system for doing mathematical calculations by computer, including symbolic and numeric calculations and graphics. It is used in physics and other branches of science, in mathematics, education and many other areas. Many important results in physics would never be obtained without a wide use of computer algebra.
"Advances in One-Dimensional Wave Mechanics" provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics. Prof. Zhuangqi Cao is a Professor of Physics at Shanghai Jiao Tong University, China. Dr. Cheng Yin is a teacher at Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, China.
The papers in this volume represent the most timely and advanced contributions to the 2014 Joint Applied Statistics Symposium of the International Chinese Statistical Association (ICSA) and the Korean International Statistical Society (KISS), held in Portland, Oregon. The contributions cover new developments in statistical modeling and clinical research: including model development, model checking, and innovative clinical trial design and analysis. Each paper was peer-reviewed by at least two referees and also by an editor. The conference was attended by over 400 participants from academia, industry, and government agencies around the world, including from North America, Asia, and Europe. It offered 3 keynote speeches, 7 short courses, 76 parallel scientific sessions, student paper sessions, and social events.
As a first comprehensive overview on Farey sequences and subsequences, this monograph is intended as a reference for anyone looking for specific material or formulas related to the subject. Duality of subsequences and maps between them are discussed and explicit proofs are shown in detail. From the Content Basic structural and enumerative properties of Farey sequences, Collective decision making, Committee methods in pattern recognition, Farey duality, Farey sequence, Fundamental Farey subsequences, Monotone bijections between Farey subsequences
Der Grundkurs Theoretische Physik deckt in 7 Banden alle fur das Diplom und fur Bachelor/Master-Studiengange massgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester notwendige theoretisch-physikalische Rustzeug. UEbungsaufgaben mit ausfuhrlichen Loesungen dienen der Vertiefung des Stoffs. Der 4. Band behandelt die Gebiete Thermodynamik und Relativitatstheorie. Fur die Neuauflage wurde er grundlegend uberarbeitet und um 24 Aufgaben erganzt. Durch die zweifarbige Gestaltung ist der Stoff jetzt noch ubersichtlicher gegliedert.
This book provides a comprehensive up-to-date presentation of some of the classical areas of reliability, based on a more advanced probabilistic framework using the modern theory of stochastic processes. This framework allows analysts to formulate general failure models, establish formulae for computing various performance measures, as well as determine how to identify optimal replacement policies in complex situations. In this second edition of the book, two major topics have been added to the original version: copula models which are used to study the effect of structural dependencies on the system reliability; and maintenance optimization which highlights delay time models under safety constraints. Terje Aven is Professor of Reliability and Risk Analysis at University of Stavanger, Norway. Uwe Jensen is working as a Professor at the Institute of Applied Mathematics and Statistics of the University of Hohenheim in Stuttgart, Germany. Review of first edition: "This is an excellent book on mathematical, statistical and stochastic models in reliability. The authors have done an excellent job of unifying some of the stochastic models in reliability. The book is a good reference book but may not be suitable as a textbook for students in professional fields such as engineering. This book may be used for graduate level seminar courses for students who have had at least the first course in stochastic processes and some knowledge of reliability mathematics. It should be a good reference book for researchers in reliability mathematics." --Mathematical Reviews (2000) "
This monograph provides a concise presentation of a mathematical approach to metastability, a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise, based on potential theory of reversible Markov processes. The authors shed new light on the metastability phenomenon as a sequence of visits of the path of the process to different metastable sets, and focuses on the precise analysis of the respective hitting probabilities and hitting times of these sets. The theory is illustrated with many examples, ranging from finite-state Markov chains, finite-dimensional diffusions and stochastic partial differential equations, via mean-field dynamics with and without disorder, to stochastic spin-flip and particle-hop dynamics and probabilistic cellular automata, unveiling the common universal features of these systems with respect to their metastable behaviour. The monograph will serve both as comprehensive introduction and as reference for graduate students and researchers interested in metastability.
This book contains four survey papers related to different topics in computational mechanics, in particular (1) novel discretization and solver techniques in mechanics and (2) inverse, control, and optimization problems in mechanics. These topics were considered in lectures, seminars, tutorials, and workshops at the Special Semester on Computational Mechanics held at the Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria, in December 2005.
This textbook offers a readily comprehensible introduction to classical Newtonian gravitation, which is fundamental for an understanding of classical mechanics and is particularly relevant to Astrophysics. The opening chapter recalls essential elements of vectorial calculus, especially to provide the formalism used in subsequent chapters. In chapter two Classical Newtonian gravity theory for one point mass and for a generic number N of point masses is then presented and discussed. The theory for point masses is naturally extended to the continuous case. The third chapter addresses the paradigmatic case of spherical symmetry in the mass density distribution (central force), with introduction of the useful tool of qualitative treatment of motion. Subsequent chapters discuss the general case of non-symmetric mass density distribution and develop classical potential theory, with elements of harmonic theory, which is essential to understand the potential development in series of the gravitational potential, the subject of the fourth chapter. Finally, in the last chapter the specific case of motion of a satellite around the earth is considered. Examples and exercises are presented throughout the book to clarify aspects of the theory. The book is aimed at those who wish to progress further beyond an initial bachelor degree, onward to a master degree, and a PhD. It is also a valuable resource for postgraduates and active researchers in the field.
This book offers a self-study program on how mathematics, computer science and science can be profitably and seamlessly intertwined. This book focuses on two variable ODE models, both linear and nonlinear, and highlights theoretical and computational tools using MATLAB to explain their solutions. It also shows how to solve cable models using separation of variables and the Fourier Series. |
You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,025
Discovery Miles 10 250
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Tax Policy and Uncertainty - Modelling…
Christopher Ball, John Creedy, …
Hardcover
R2,508
Discovery Miles 25 080
|