![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
This is an introductory textbook on computational methods and techniques intended for undergraduates at the sophomore or junior level in the fields of science, mathematics, and engineering. It provides an introduction to programming languages such as FORTRAN 90/95/2000 and covers numerical techniques such as differentiation, integration, root finding, and data fitting. The textbook also entails the use of the Linux/Unix operating system and other relevant software such as plotting programs, text editors, and mark up languages such as LaTeX. It includes multiple homework assignments.
This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.
This book contains selected chapters on recent research in topology. It bridges the gap between recent trends of topological theories and their applications in areas like social sciences, natural sciences, soft computing, economics, theoretical chemistry, cryptography, pattern recognitions and granular computing. There are 14 chapters, including two chapters on mathematical economics from the perspective of topology. The book discusses topics on function spaces, relator space, preorder, quasi-uniformities, bitopological dynamical systems, b-metric spaces and related fixed point theory. This book is useful to researchers, experts and scientists in studying the cutting-edge research in topology and related areas and helps them applying topology in solving real-life problems the society and science are facing these days..Â
MESH ist ein mathematisches Video ber vielfl chige Netzwerke und ihre Rolle in der Geometrie, der Numerik und der Computergraphik. Der unter Anwendung der neuesten Technologie vollst ndig computergenierte Film spannt einen Bogen von der antiken griechischen Mathematik zum Gebiet der heutigen geometrischen Modellierung. MESH hat zahlreiche wissenschaftliche Preise weltweit gewonnen. Die Autoren sind Konrad Polthier, ein Professor der Mathematik, und Beau Janzen, ein professioneller Filmdirektor. Der Film ist ein ausgezeichnetes Lehrmittel f r Kurse in Geometrie, Visualisierung, wissenschaftlichem Rechnen und geometrischer Modellierung an Universit ten, Zentren f r wissenschaftliches Rechnen, kann jedoch auch an Schulen genutzt werden.
This book covers different aspects of umbral calculus and of its more recent developments. It discusses the technical details in depth, including its relevant applications. The book has therefore manyfold scopes to introduce a mathematical tool, not widespread known as it should be; to present a complete account of the relevant capabilities through the use of different examples of applications; to provide a formal bridge between different fields of research in pure and applied.
Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications is a comprehensive guide to these methods and their various applications in recent years. Due to the attractive features of rapid convergence, high accuracy, and computational efficiency, the differential quadrature method and its based element methods are increasingly being used to study problems in the area of structural mechanics, such as static, buckling and vibration problems of composite structures and functional material structures. This book covers new developments and their applications in detail, with accompanying FORTRAN and MATLAB programs to help you overcome difficult programming challenges. It summarises the variety of different quadrature formulations that can be found by varying the degree of polynomials, the treatment of boundary conditions and employing regular or irregular grid points, to help you choose the correct method for solving practical problems.
In Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, the fundamental laws of thermodynamics are stated precisely as postulates and subsequently connected to historical context and developed mathematically. These laws are applied systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Statistical mechanics is presented in the context of information theory to quantify entropy, followed by development of the most important ensembles: microcanonical, canonical, and grand canonical. A unified treatment of ideal classical, Fermi, and Bose gases is presented, including Bose condensation, degenerate Fermi gases, and classical gases with internal structure. Additional topics include paramagnetism, adsorption on dilute sites, point defects in crystals, thermal aspects of intrinsic and extrinsic semiconductors, density matrix formalism, the Ising model, and an introduction to Monte Carlo simulation. Throughout the book, problems are posed and solved to illustrate specific results and problem-solving techniques.
This proceedings volume documents the contributions presented at the CONIAPS XXVII international Conference on Recent Advances in Pure and Applied Algebra. The entries focus on modern trends and techniques in various branches of pure and applied Algebra and highlight their applications in coding theory, cryptography, graph theory, and fuzzy theory.
First published in 1963, Advances in Parasitology contains comprehensive and up-to-date reviews in all areas of interest in contemporary parasitology. Advances in Parasitology includes medical studies of parasites of major influence, such as Plasmodium falciparum and trypanosomes. The series also contains reviews of more traditional areas, such as zoology, taxonomy, and life history, which shape current thinking and applications. The 2013 impact factor is 4.36.
Quantitative Finance with Python: A Practical Guide to Investment Management, Trading and Financial Engineering bridges the gap between the theory of mathematical finance and the practical applications of these concepts for derivative pricing and portfolio management. The book provides students with a very hands-on, rigorous introduction to foundational topics in quant finance, such as options pricing, portfolio optimization and machine learning. Simultaneously, the reader benefits from a strong emphasis on the practical applications of these concepts for institutional investors. Features Useful as both a teaching resource and as a practical tool for professional investors. Ideal textbook for first year graduate students in quantitative finance programs, such as those in master's programs in Mathematical Finance, Quant Finance or Financial Engineering. Includes a perspective on the future of quant finance techniques, and in particular covers some introductory concepts of Machine Learning. Free-to-access repository with Python codes available at www.routledge.com/ 9781032014432.
This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.
Ideal for college students in intermediate finance courses, this book uniquely applies mathematical formulas to teach the underpinnings of financial and lending decisions, covering common applications in real estate, capital budgeting, and commercial loans. An updated and expanded version of the time-honored classic text on financial math, this book provides, in one place, a complete and practical treatment of the four primary venues for finance: commercial lending, financial formulas, mortgage lending, and resource allocation or capital budgeting techniques. With an emphasis on understanding the principles involved rather than blind reliance on formulas, the book provides rigorous and thorough explanations of the mathematical calculations used in determining the time value of money, valuation of loans by commercial banks, valuation of mortgages, and the cost of capital and capital budgeting techniques for single as well as mutually exclusive projects. This new edition devotes an entire chapter to a method of evaluating mutually exclusive projects without resorting to any imposed conditions. Two chapters not found in the previous edition address special topics in finance, including a novel and innovative way to approach amortization tables and the time value of money for cash flows when they increase geometrically or arithmetically. This new edition also features helpful how-to sections on Excel applications at the end of each appropriate chapter. Lays the foundation of all the topics that are typically covered in a financial management textbook or class Demonstrates how the mastery of a few basic concepts-such as the time value of money under all possible situations-allows for a precise understanding of more complex topics in finance Describes how all advanced capital budgeting techniques can be reduced to the simplest technique-the payback period method Examines traditional financial techniques using simple interest rate and accounting rate of return methods to conclusively show how these practices are now defunct
The results of renormalized perturbation theory, in QCD and other quantum field theories, are ambiguous at any finite order, due to renormalization-scheme dependence. The perturbative results depend upon extraneous scheme variables, including the renormalization scale, that the exact result cannot depend on. Such 'non-invariant approximations' occur in many other areas of physics, too. The sensible strategy is to find where the approximant is stationary under small variations of the extraneous variables. This general principle is explained and illustrated with various examples. Also dimensional transmutation, RG equations, the essence of renormalization and the origin of its ambiguities are explained in simple terms, assuming little or no background in quantum field theory. The minimal-sensitivity approach leads to 'optimized perturbation theory,' which is developed in detail. Applications to Re+e-, the infrared limit, and to the optimization of factorized quantities, are also discussed thoroughly.
Quantum mechanics is one of the most fascinating, and at the same time most controversial, branches of contemporary science. Disputes have accompanied this science since its birth and have not ceased to this day. "Uncommon Paths in Quantum Physics" allows the reader to
contemplate deeply some ideas and methods that are seldom met in
the contemporary literature. Instead of widespread recipes of
mathematical physics, based on the solutions of
integro-differential equations, the book follows logical and partly
intuitional derivations of non-commutative algebra. Readers can
directly penetrate the abstract world of quantum mechanics.
This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented.
"Practical Guides in Chemical Engineering" are a cluster of short texts that each provides a focused introductory view on a single subject. The full library spans the main topics in the chemical process industries that engineering professionals require a basic understanding of. They are pocket publications that the professional engineer can easily carry with them or access electronically while working. Each text is highly practical and applied, and presents first principles for engineers who need to get up to speed in a new area fast. The focused facts provided in each guide will help you converse with experts in the field, attempt your own initial troubleshooting, check calculations, and solve rudimentary problems. "Dimensional Analysis" provides the foundation for similitude
and for up and downscaling. Aeronautical, Civil, and Mechanical
Engineering have used Dimensional Analysis profitably for over one
hundred years. Chemical Engineering has made limited use of it due
to the complexity of chemical processes. However, Chemical
Engineering can now employ Dimensional Analysis widely due to the
free-for-use matrix calculators now available on the Internet. This
book shows how to apply matrices to Dimensional Analysis.
For various scientific and engineering problems, how to deal with variables and parameters of uncertain value is an important issue. Full analysis of the specific errors in measurement, observations, experiments, and applications are vital in dealing with the parameters taken to simplify the problem. Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems aims to provide the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications. This book is an essential reference work for students, scholars, practitioners and researchers in the assorted fields of engineering and applied mathematics interested in a model for uncertain physical problems.
"Computational Methods in Engineering" brings to light the numerous uses of numerical methods in engineering. It clearly explains the application of these methods mathematically and practically, emphasizing programming aspects when appropriate. By approaching the cross-disciplinary topic of numerical methods with a flexible approach, "Computational Methods in Engineering" encourages a well-rounded understanding of the subject. This book's teaching goes beyond the text detailed exercises
(with solutions), real examples of numerical methods in real
engineering practices, flowcharts, and MATLAB codes all help you
learn the methods directly in the medium that suits you best.
"Mathematical Formulas For Industrial and Mechanical
Engineering" serves the needs of students and teachers as well as
professional workers in engineering who use mathematics. The
contents and size make it especially convenient and portable. The
widespread availability and low price of scientific calculators
have greatly reduced the need for many numerical tables that make
most handbooks bulky. However, most calculators do not give
integrals, derivatives, series and other mathematical formulas and
figures that are often needed. Accordingly, this book contains that
information in an easy way to access in addition to illustrative
examples that make formulas clearer. Students and professionals
alike will find this book a valuable supplement to standard
textbooks, a source for review, and a handy reference for many
years.
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. |
You may like...
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
|