![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
* Assumes no prior knowledge
The papers in this volume consider a general area of study known as network routing. The underlying problems are conceptually simple, yet mathematically complex and challenging. How can we best route material or people from one place to another? Or, how can we best design a system (for instance locate facilities) to provide services and goods as efficiently and equitably as possible? The problems encountered in answering these questions often have an underlying combinatorial structure, for example, either we dispatch a vehicle or we do not, or we use one particular route or another. The problems also typically have an underlying network structure (a communication or transportation network). In addition, models for these problems are often very large with hundreds or thousands of constraints and variables. A companion volume in the "Handbook" series, entitled "Network Models", treats basic network models such as minimum cost flows, matching and the travelling salesman problem, as well as, several complex network topics, not directly related to routing, such as network design and network reliability.
Mathematical modelling modules feature in most university
undergraduate mathematics courses. As one of the fastest growing
areas of the curriculum it represents the current trend in teaching
the more complex areas of mathematics. This book introduces
mathematical modelling to the new style of undergraduate - those
with less prior knowledge, who require more emphasis on application
of techniques in the following sections: What is mathematical
modelling?; Seeing modelling at work through population growth;
Seeing modelling at work through published papers; Modelling in
mechanics.
This book gives a rigorous yet physics focused introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general rather than taking a philosophical-math-fundamental oriented approach that is commonly found in mathematical logic textbooks.
The subject of geomathematics focuses on the interpretation and classification of data from geoscientific and satellite sources, reducing information to a comprehensible form and allowing the testing of concepts. Sphere oriented mathematics plays an important part in this study and this book provides the necessary foundation for graduate students and researchers interested in any of the diverse topics of constructive approximation in this area. This book bridges the existing gap between monographs on special functions of mathematical physics and constructive approximation in Euclidean spaces. The primary objective is to provide readers with an understanding of aspects of approximation by spherical harmonics, such as spherical splines and wavelets, as well as indicating future directions of research. Scalar, vectorial, and tensorial methods are each considered in turn. The concentration on spherical splines and wavelets allows a double simplification; not only is the number of independent variables reduced resulting in a lower dimensional problem, but also radial basis function techniques become applicable. When applied to geomathematics this leads to new structures and methods by which sophisticated measurements and observations can be handled more efficiently, thus reducing time and costs.
While the significance of networks in various human behavior and activities has a history as long as human's existence, network awareness is a recent scientific phenomenon. The neologism network science is just one or two decades old. Nevertheless, with this limited time, network thinking has substantially reshaped the recent development in economics, and almost all solutions to real-world problems involve the network element. This book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The authors begin with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling's segregation model and Axelrod's spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The text also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. It reviews a number of pioneering and representative models in this family. Upon the given foundation, the second part reviews three primary forms of network dynamics, such as diffusions, cascades, and influences. These primary dynamics are further extended and enriched by practical networks in goods-and-service markets, labor markets, and international trade. At the end, the book considers two challenging issues using agent-based models of networks: network risks and economic growth.
This hands-on guide is primarily intended to be used in
undergraduate laboratories in the physical sciences and
engineering. It assumes no prior knowledge of statistics. It
introduces the necessary concepts where needed, with key points
illustrated with worked examples and graphic illustrations. In
contrast to traditional mathematical treatments it uses a
combination of spreadsheet and calculus-based approaches, suitable
as a quick and easy on-the-spot reference. The emphasis throughout
is on practical strategies to be adopted in the laboratory.
Starting from a clear, concise introduction, the powerful finite element and boundary element methods of engineering are developed for application to quantum mechanics. The reader is led through illustrative examples displaying the strengths of these methods using applications to fundamental quantum mechanical problems and to the design/simulation of quantum nanoscale devices.
This volume collects numerous recent advances in the study of stratified fluids. It includes analytical and experimental work from a wide range of fields, including meteorology, limnology, oceanography, and the study of estuarine processes. It also includes fundamental research on stratified and rotating fluid dynamics. A compendium of current work, the book is an ideal starting point for future research.
An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.
Susanna Epp's DISCRETE MATHEMATICS WITH APPLICATIONS, 4e, International Edition provides a clear introduction to discrete mathematics. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision. This book presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography, and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. Overall, Epp's emphasis on reasoning provides students with a strong foundation for computer science and upper-level mathematics courses.
Presenting innovative modelling approaches to the analysis of fiscal policy and government debt, this book moves beyond previous models that have relied upon the assumption that various age-specific rates and policy variables remain unchanged when it comes to generating government expenditures and tax revenues. As a result of population ageing, current policy settings in many countries are projected to lead to unsustainable levels of public debt; Tax Policy and Uncertainty explores models that allow for feedbacks and uncertainty to combat this. Applicable to any country, the models in the book explore the optimal timing and extent of tax changes in the face of anticipated high future debt. Chapters produce stochastic debt projections, including probability distribution of debt ratios at each point in time. It also offers important analysis of fiscal policy trade-offs as well as providing advice on when and by how much tax rates should be increased. Economics scholars focusing on fiscal policy will appreciate the improved models in this book that allow both for uncertainty and feedback effects arising from responses to increased debt. It will also be helpful to economic policy advisors and economists in government departments.
This second book on Unity Root Matrix Theory extends its original three-dimensional formulation, as given in the first book, to an arbitrary number of higher dimensions. Unity Root Matrix Theory is formulated with strong adherence to concepts in mathematical physics and it is thought it may provide a discrete formulation of physical phenomena at the Planck level and upward. Consequently, it is essential that the theory incorporates the geometric dimensionality present in established physical theories. In particular, it must naturally embody the four-dimensional spacetime of Special Relativity, the five dimensions of Kaluza-Klein theory, and the eleven or more dimensions of Grand Unified Theories such as String Theory. Not only has an n-dimensional extension of Unity Root Matrix Theory successfully been achieved, whilst retaining all the three-dimensional mathematical and physical properties detailed in the first book, but a complete n-dimensional solution has been obtained which exhibits the geometric property of compactification, or dimensional reduction. This solution shows that dimensional shrinkage of higher dimensions may occur over long evolutionary timescales. The emergence of compactification and other physical phenomena gives further confidence that n-dimensional Unity Root Matrix Theory may, indeed, offer a discrete formulation of Physics starting at its most elemental level.
As the operations of the world become more and more dependent on highly interconnected, massively complex, networked systems of computational devices, the need to develop a mathematical understanding of their properties and behaviours is increasingly pressing. Our approach, described in this monograph, is to combine the compositionality of formal specification -- using techniques from algebra, computation theory, logic, and probability theory -- with the control of level of abstraction afforded by the classical mathematical modelling method.
Developed on surprisingly simple but fundamental concepts, it provides a rich mathematical and physical structure, justifying it as a subject to be studied in its own right by physicists and mathematicians alike. Ultimately, it is thought that unity root matrix theory may provide an alternative reformulation of some fundamental concepts in physics and an integer-based escape from the current, unification impasse.
Stochastic processes have a wide range of applications ranging from image processing, neuroscience, bioinformatics, financial management, and statistics. Mathematical, physical, and engineering systems use stochastic processes for modeling and reasoning phenomena. While comparing AI-stochastic systems with other counterpart systems, we are able to understand their significance, thereby applying new techniques to obtain new real-time results and solutions. Stochastic Processes and Their Applications in Artificial Intelligence opens doors for artificial intelligence experts to use stochastic processes as an effective tool in real-world problems in computational biology, speech recognition, natural language processing, and reinforcement learning. Covering key topics such as social media, big data, and artificial intelligence models, this reference work is ideal for mathematicians, industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.
Theoretical advances and new foundations have been reported at the Conference for more than 40 years which has helped expand the range of applications as well as the type of materials in response to industrial and professional requirements. Since the conference started it has attracted high quality papers that report further advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences, for instance. As design, analysis and manufacture become more integrated, the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications, which demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. The included papers originate from the 46th conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM) which acts as a forum to discuss new ideas and critically compare results before the solution and tools are released to the end users. |
You may like...
The Realism-Antirealism Debate in the…
Shahid Rahman, Giuseppe Primiero, …
Hardcover
R4,058
Discovery Miles 40 580
Making it Formally Explicit…
Gabor Hofer-Szabo, Leszek Wronski
Hardcover
Free Will, Agency, and Selfhood in…
Matthew R. Dasti, Edwin F. Bryant
Hardcover
R3,844
Discovery Miles 38 440
Conceivability and Possibility
Tamar Szabo Gendler, John Hawthorne
Hardcover
R5,226
Discovery Miles 52 260
|