Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics
Communicable diseases have been an important part of human history. Epidemics afflicted populations, causing many deaths before gradually fading away and emerging again years after. Epidemics of infectious diseases are occurring more often, and spreading faster and further than ever, in many different regions of the world. The scientific community, in addition to its accelerated efforts to develop an effective treatment and vaccination, is also playing an important role in advising policymakers on possible non-pharmacological approaches to limit the catastrophic impact of epidemics using mathematical and machine learning models. Controlling Epidemics With Mathematical and Machine Learning Models provides mathematical and machine learning models for epidemical diseases, with special attention given to the COVID-19 pandemic. It gives mathematical proof of the stability and size of diseases. Covering topics such as compartmental models, reproduction number, and SIR model simulation, this premier reference source is an essential resource for statisticians, government officials, health professionals, epidemiologists, sociologists, students and educators of higher education, librarians, researchers, and academicians.
This book presents recently obtained mathematical results on Gibbs measures of the q-state Potts model on the integer lattice and on Cayley trees. It also illustrates many applications of the Potts model to real-world situations in biology, physics, financial engineering, medicine, and sociology, as well as in some examples of alloy behavior, cell sorting, flocking birds, flowing foams, and image segmentation.Gibbs measure is one of the important measures in various problems of probability theory and statistical mechanics. It is a measure associated with the Hamiltonian of a biological or physical system. Each Gibbs measure gives a state of the system.The main problem for a given Hamiltonian on a countable lattice is to describe all of its possible Gibbs measures. The existence of some values of parameters at which the uniqueness of Gibbs measure switches to non-uniqueness is interpreted as a phase transition.This book informs the reader about what has been (mathematically) done in the theory of Gibbs measures of the Potts model and the numerous applications of the Potts model. The main aim is to facilitate the readers (in mathematical biology, statistical physics, applied mathematics, probability and measure theory) to progress into an in-depth understanding by giving a systematic review of the theory of Gibbs measures of the Potts model and its applications.
The world of single-board computing puts powerful coding tools in the palm of your hand. The portable Raspberry Pi computing platform with the power of Linux yields an exciting exploratory tool for beginning scientific computing. Science and Computing with Raspberry Pi takes the enterprising researcher, student, or hobbyist through explorations in a variety of computing exercises with the physical sciences. The book has tutorials and exercises for a wide range of scientific computing problems while guiding the user through: Configuring your Raspberry Pi and Linux operating system Understanding the software requirements while using the Pi for scientific computing Computing exercises in physics, astronomy, chaos theory, and machine learning
This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.
This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.
In recent years, substantial efforts are being made in the development of reliability theory including fuzzy reliability theories and their applications to various real-life problems. Fuzzy set theory is widely used in decision making and multi criteria such as management and engineering, as well as other important domains in order to evaluate the uncertainty of real-life systems. Fuzzy reliability has proven to have effective tools and techniques based on real set theory for proposed models within various engineering fields, and current research focuses on these applications. Advancements in Fuzzy Reliability Theory introduces the concept of reliability fuzzy set theory including various methods, techniques, and algorithms. The chapters present the latest findings and research in fuzzy reliability theory applications in engineering areas. While examining the implementation of fuzzy reliability theory among various industries such as mining, construction, automobile, engineering, and more, this book is ideal for engineers, practitioners, researchers, academicians, and students interested in fuzzy reliability theory applications in engineering areas.
This book uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. Although not a how-to manual, the topics center around hands-on applications, sometimes illustrated by photographic processes that are inexpensive and easily accessible to students (including a versatile new process developed by the author, and first described in print in this series). A central theme is the connection between the physical interaction of light and matter on the one hand, and the artistry of the photographic processes and their results on the other. This is the third volume in this three-part series that uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. It focuses on the physics and chemistry of photographic light-sensitive materials, as well as the human retina. It also considers the fundamental nature of digital photography and its relationship to the analog photography that preceded it.
This book covers different aspects of umbral calculus and of its more recent developments. It discusses the technical details in depth, including its relevant applications. The book has therefore manyfold scopes to introduce a mathematical tool, not widespread known as it should be; to present a complete account of the relevant capabilities through the use of different examples of applications; to provide a formal bridge between different fields of research in pure and applied.
Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB (R), this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material - including lecture videos per section, homeworks, data, and code in MATLAB (R), Python, Julia, and R - available on databookuw.com.
This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.
This book demonstrates Microsoft EXCEL-based Fourier transform of selected physics examples. Spectral density of the auto-regression process is also described in relation to Fourier transform. Rather than offering rigorous mathematics, readers will "try and feel" Fourier transform for themselves through the examples. Readers can also acquire and analyze their own data following the step-by-step procedure explained in this book. A hands-on acoustic spectral analysis can be one of the ideal long-term student projects.
This book contains selected chapters on recent research in topology. It bridges the gap between recent trends of topological theories and their applications in areas like social sciences, natural sciences, soft computing, economics, theoretical chemistry, cryptography, pattern recognitions and granular computing. There are 14 chapters, including two chapters on mathematical economics from the perspective of topology. The book discusses topics on function spaces, relator space, preorder, quasi-uniformities, bitopological dynamical systems, b-metric spaces and related fixed point theory. This book is useful to researchers, experts and scientists in studying the cutting-edge research in topology and related areas and helps them applying topology in solving real-life problems the society and science are facing these days..
This book provides a concise introduction to both the special theory of relativity and the general theory of relativity. The format is chosen to provide the basis for a single semester course which can take the students all the way from the foundations of special relativity to the core results of general relativity: the Einstein equation and the equations of motion for particles and light in curved spacetime. To facilitate access to the topics of special and general relativity for science and engineering students without prior training in relativity or geometry, the relevant geometric notions are also introduced and developed from the ground up. Students in physics, mathematics or engineering with an interest to learn Einstein's theories of relativity should be able to use this book already in the second semester of their third year. The book could also be used as the basis of a graduate level introduction to relativity for students who did not learn relativity as part of their undergraduate training.
Holographic dualities are at the forefront of contemporary physics research, peering into the fundamental nature of our universe and providing best attempt answers to humankind's bold questions about basic physical phenomena. Yet, the concepts, ideas and mathematical rigors associated with these dualities have long been reserved for the specific field researchers and experts. This book shatters this long held paradigm by bringing several aspects of holography research into the class room, starting at the college physics level and moving up from there.
The results of renormalized perturbation theory, in QCD and other quantum field theories, are ambiguous at any finite order, due to renormalization-scheme dependence. The perturbative results depend upon extraneous scheme variables, including the renormalization scale, that the exact result cannot depend on. Such 'non-invariant approximations' occur in many other areas of physics, too. The sensible strategy is to find where the approximant is stationary under small variations of the extraneous variables. This general principle is explained and illustrated with various examples. Also dimensional transmutation, RG equations, the essence of renormalization and the origin of its ambiguities are explained in simple terms, assuming little or no background in quantum field theory. The minimal-sensitivity approach leads to 'optimized perturbation theory,' which is developed in detail. Applications to Re+e-, the infrared limit, and to the optimization of factorized quantities, are also discussed thoroughly.
This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB (R) is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
Using the familiar software Microsoft ® Excel, this book examines the applications of complex variables. Implementation of the included problems in Excel eliminates the “black box” nature of more advanced computer software and programming languages and therefore the reader has the chance to become more familiar with the underlying mathematics of the complex variable problems. This book consists of two parts. In Part I, several topics are covered that one would expect to find in an introductory text on complex variables. These topics include an overview of complex numbers, functions of a complex variable, and the Cauchy integral formula. In particular, attention is given to the study of analytic complex variable functions. This attention is warranted because of the property that the real and imaginary parts of an analytic complex variable function can be used to solve the Laplace partial differential equation (PDE). Laplace's equation is ubiquitous throughout science and engineering as it can be used to model the steady-state conditions of several important transport processes including heat transfer, soil-water flow, electrostatics, and ideal fluid flow, among others. In Part II, a specialty application of complex variables known as the Complex Variable Boundary Element Method (CVBEM) is examined. CVBEM is a numerical method used for solving boundary value problems governed by Laplace's equation. This part contains a detailed description of the CVBEM and a guide through each step of constructing two CVBEM programs in Excel. The writing of these programs is the culminating event of the book. Students of complex variables and anyone with interest in a novel method for approximating potential functions using the principles of complex variables are the intended audience for this book. The Microsoft Excel applications (including simple programs as well as the CVBEM program) covered will also be of interest in the industry, as these programs are accessible to anybody with Microsoft Office. |
You may like...
Tax Policy and Uncertainty - Modelling…
Christopher Ball, John Creedy, …
Hardcover
R2,508
Discovery Miles 25 080
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
|