![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
Quantum mechanics - central not only to physics, but also to chemistry, materials science, and other fields - is notoriously abstract and difficult. Essential Quantum Mechanics is a uniquely concise and explanatory book that fills the gap between introductory and advanced courses, between popularizations and technical treatises. By focusing on the fundamental structure, concepts, and methods of quantum mechanics, this introductory yet sophisticated work emphasizes both physical and mathematical understanding. A modern perspective is adopted throughout - the goal, in part, being to gain entry into the world of 'real' quantum mechanics, as used by practicing scientists. With over 60 original problems, Essential Quantum Mechanics is suitable as either a text or a reference. It will be invaluable to physics students as well as chemists, electrical engineers, philosophers, and others whose work is impacted by quantum mechanics, or who simply wish to better understand this fascinating subject.
This book illustrates the powerful interplay between topological, algebraic and complex analytical methods, within the field of integrable systems, by addressing several theoretical and practical aspects. Contemporary integrability results, discovered in the last few decades, are used within different areas of mathematics and physics. Integrable Systems incorporates numerous concrete examples and exercises, and covers a wealth of essential material, using a concise yet instructive approach. This book is intended for a broad audience, ranging from mathematicians and physicists to students pursuing graduate, Masters or further degrees in mathematics and mathematical physics. It also serves as an excellent guide to more advanced and detailed reading in this fundamental area of both classical and contemporary mathematics.
This contemporary first course focuses on concepts and ideas of
Measure Theory, highlighting the theoretical side of the subject.
Its primary intention is to introduce Measure Theory to a new
generation of students, whether in mathematics or in one of the
sciences, by offering them on the one hand a text with complete,
rigorous and detailed proofs--sketchy proofs have been a perpetual
complaint, as demonstrated in the many Amazon reader reviews
critical of authors who "omit 'trivial' steps" and "make
not-so-obvious 'it is obvious' remarks." On the other hand,
Kubrusly offers a unique collection of fully hinted problems. On
the other hand, Kubrusly offers a unique collection of fully hinted
problems. The author invites the readers to take an active part in
the theory construction, thereby offering them a real chance to
acquire a firmer grasp on the theory they helped to build. These
problems, at the end of each chapter, comprise complements and
extensions of the theory, further examples and counterexamples, or
auxiliary results. They are an integral part of the main text,
which sets them apart from the traditional classroom or homework
exercises.
Mathematical Problems for Chemistry Students has been compiled and
written (a) to help chemistry
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics.
.A unique book concentrated on theory of discrete dynamical
systems and its traditional as well as advanced applications to
economics. .A unique book concentrated on theory of discrete dynamical
systems and its traditional as well as advanced applications to
economics.
Chapters collected from "The Virtual Conference on Chemistry and its Applications (VCCA-2021) - Research and Innovations in Chemical Sciences: Paving the Way Forward". This conference was held in August 2021 and organized by the Computational Chemistry Group of the University of Mauritius. These peer-reviewed chapters offer insights into research on fundamental and applied chemistry with interdisciplinary subject matter.
This PhD thesis is dedicated to a subfield of elementary particle physics called "Flavour Physics". The Standard Model of Particle Physics (SM) has been confirmed by thousands of experimental measurements with a high precision. But the SM leaves important questions open, like what is the nature of dark matter or what is the origin of the matter-antimatter asymmetry in the Universe. By comparing high precision Standard Model calculations with extremely precise measurements, one can find the first glimpses of the physics beyond the SM - currently we see the first hints of a potential breakdown of the SM in flavour observables. This can then be compared with purely theoretical considerations about new physics models, known as model building. Both precision calculations and model building are extremely specialised fields and this outstanding thesis contributes significantly to both topics within the field of Flavour Physics and sheds new light on the observed anomalies.
The book presents the recent achievements on bifurcation studies of
nonlinear dynamical systems. The contributing authors of the book
are all distinguished researchers in this interesting subject area.
The first two chapters deal with the fundamental theoretical issues
of bifurcation analysis in smooth and non-smooth dynamical systems.
The cell mapping methods are presented for global bifurcations in
stochastic and deterministic, nonlinear dynamical systems in the
third chapter. The fourth chapter studies bifurcations and chaos in
time-varying, parametrically excited nonlinear dynamical systems.
The fifth chapter presents bifurcation analyses of modal
interactions in distributed, nonlinear, dynamical systems of
circular thin von Karman plates. The theories, methods and results
presented in this book are of great interest to scientists and
engineers in a wide range of disciplines. This book can be adopted
as references for mathematicians, scientists, engineers and
graduate students conducting research in nonlinear dynamical
systems.
Lab Math: A Handbook of Measurements, Calculations, and Other Quantitative Skills for Use at the Bench, 2nd edition, collects in one place the numbers and equations you rely on for your experiments and use to report your data-what they mean and how to use them-as well as easy-to-follow shortcuts for making the math easier. Written in an accessible and informal style, Lab Math describes basic mathematical principles and various tasks involving numbers, including how to calibrate lab equipment, how to make solutions, and the numbers involved in various methods for quantifying DNA, RNA, and proteins, and an all-new section on quantitative polymerase chain reaction. Basic statistical ideas and methods and the proper reporting of uncertainty are described in simple-to-understand language. Also included are reference tables, charts and "plug-and-chug" equation blanks for specific experimental procedures. Since the publication of the first edition in 2003, Lab Math has become an essential math reference and teaching resource for both on-the-spot practical information and background for understanding numerical tasks. Important additions in this second edition make Lab Math an even more useful tool for every laboratory.
This is the first English translation of Launhardt's Mathematische Begrundung der Volkswirtschaftslehre (1885), a major contribution to neoclassical economic theory which contains many important and original analyses. This edition will provide the basis for a re-evaluation of Launhardt's outstanding, but undervalued, contribution to economics. Taking the neoclassical emphasis on exchange as the central economic problem, Laundardt begins with a thorough treatment of the pure exchange model, then goes on to extend the treatment to the production of goods and the supply of labour, with a sophisticated general equilibrium perspective. It contains important analyses of savings and the role of capital goods, as well as an outstanding study of transport and the location of industry. Launhardt's book can, with justice, with be described as the first comprehensive treatise on welfare economics. Mathematical Principles of Economics will prove stimulating reading for economic theorists as well as those interested in the history of economics thought.
This book is devoted to an important branch of the dynamical systems theory: the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems.
This book describes the advanced stability theories for magnetically confined fusion plasmas, especially in tokamaks. As the fusion plasma sciences advance, the gap between the textbooks and cutting-edge researches gradually develops.
This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler's destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.
This is the proceedings of the IUTAM Symposium on Exploiting Nonlinear Dynamics for Engineering Systems that was held in Novi Sad, Serbia, from July 15th to 19th, 2018. The appearance of nonlinear phenomena used to be perceived as dangerous, with a general tendency to avoid them or control them. This perception has led to intensive research using various approaches and tailor-made tools developed over decades. However, the Nonlinear Dynamics of today is experiencing a profound shift of paradigm since recent investigations rely on a different strategy which brings good effects of nonlinear phenomena to the forefront. This strategy has a positive impact on different fields in science and engineering, such as vibration isolation, energy harvesting, micro/nano-electro-mechanical systems, etc. Therefore, the ENOLIDES Symposium was devoted to demonstrate the benefits and to unlock the potential of exploiting nonlinear dynamical behaviour in these but also in other emerging fields of science and engineering. This proceedings is useful for researchers in the fields of nonlinear dynamics of mechanical systems and structures, and in Mechanical and Civil Engineering.
This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.
Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.
This book is a course in methods and models rooted in physics and
used in modelling economic and social phenomena. It covers the
discipline of econophysics, which creates an interface between
physics and economics. Besides the main theme, it touches on the
theory of complex networks and simulations of social phenomena in
general.
Originating from the 42nd conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM), the research presented in this book consist of high quality papers that report on advances in techniques that reduce or eliminate the type of meshes associated with such methods as finite elements or finite differences. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications which demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. As design, analysis and manufacture become more integrated the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The papers in this volume help to expand the range of applications as well as the type of materials in response to industrial and professional requirements. Some of the topics include: Hybrid foundations; Meshless and mesh reduction methods; Structural mechanics; Solid mechanics; Heat and mass transfer; Electrical engineering and electromagnetics; Fluid flow modelling; Damage mechanics and fracture; Dynamics and vibrations analysis.
The Boussinesq equation is the first model of surface waves in shallow water that considers the nonlinearity and the dispersion and their interaction as a reason for wave stability known as the Boussinesq paradigm. This balance bears solitary waves that behave like quasi-particles. At present, there are some Boussinesq-like equations. The prevalent part of the known analytical and numerical solutions, however, relates to the 1d case while for multidimensional cases, almost nothing is known so far. An exclusion is the solutions of the Kadomtsev-Petviashvili equation. The difficulties originate from the lack of known analytic initial conditions and the nonintegrability in the multidimensional case. Another problem is which kind of nonlinearity will keep the temporal stability of localized solutions. The system of coupled nonlinear Schroedinger equations known as well as the vector Schroedinger equation is a soliton supporting dynamical system. It is considered as a model of light propagation in Kerr isotropic media. Along with that, the phenomenology of the equation opens a prospect of investigating the quasi-particle behavior of the interacting solitons. The initial polarization of the vector Schroedinger equation and its evolution evolves from the vector nature of the model. The existence of exact (analytical) solutions usually is rendered to simpler models, while for the vector Schroedinger equation such solutions are not known. This determines the role of the numerical schemes and approaches. The vector Schroedinger equation is a spring-board for combining the reduced integrability and conservation laws in a discrete level. The experimental observation and measurement of ultrashort pulses in waveguides is a hard job and this is the reason and stimulus to create mathematical models for computer simulations, as well as reliable algorithms for treating the governing equations. Along with the nonintegrability, one more problem appears here - the multidimensionality and necessity to split and linearize the operators in the appropriate way.
Providing a practical introduction to state space methods as
applied to unobserved components time series models, also known as
structural time series models, this book introduces time series
analysis using state space methodology to readers who are neither
familiar with time series analysis, nor with state space methods.
The only background required in order to understand the material
presented in the book is a basic knowledge of classical linear
regression models, of which brief review is provided to refresh the
reader's knowledge. Also, a few sections assume familiarity with
matrix algebra, however, these sections may be skipped without
losing the flow of the exposition. |
You may like...
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
New Trends in the Physics and Mechanics…
Martine Ben Amar, Alain Goriely, …
Hardcover
R2,505
Discovery Miles 25 050
|