![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics
This book presents time synchronization and its essential role as a conduit of optimized networks and as one of the key imperatives of ubiquitous connectivity. The author discusses how, without proper time synchronization, many mission critical infrastructures such as 5G mobile networks, smart grids, data centres CATV, and industrial networks would render in serious performance issues and may be subject to catastrophic failure. The book provides a thorough understanding of time synchronization from fundamental concepts to the application of time synchronization in NextGen mission critical infrastructure. Readers will find information not only on designing the optimized products for mission critical infrastructure but also on building NextGen mission critical infrastructure.
This book gives a rigorous, physics focused, introduction to set theory that is geared towards natural science majors.We present the science major with a robust introduction to set theory, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general, rather than taking a philosophical-math-fundamental oriented approach that is commonly found in set theory textbooks.
To put the world of linear algebra to advanced use, it is not enough to merely understand the theory; there is a significant gap between the theory of linear algebra and its myriad expressions in nearly every computational domain. To bridge this gap, it is essential to process the theory by solving many exercises, thus obtaining a firmer grasp of its diverse applications. Similarly, from a theoretical perspective, diving into the literature on advanced linear algebra often reveals more and more topics that are deferred to exercises instead of being treated in the main text. As exercises grow more complex and numerous, it becomes increasingly important to provide supporting material and guidelines on how to solve them, supporting students' learning process. This book provides precisely this type of supporting material for the textbook "Numerical Linear Algebra and Matrix Factorizations," published as Vol. 22 of Springer's Texts in Computational Science and Engineering series. Instead of omitting details or merely providing rough outlines, this book offers detailed proofs, and connects the solutions to the corresponding results in the textbook. For the algorithmic exercises the utmost level of detail is provided in the form of MATLAB implementations. Both the textbook and solutions are self-contained. This book and the textbook are of similar length, demonstrating that solutions should not be considered a minor aspect when learning at advanced levels.
This book provides an overview of the current advances in artificial intelligence and neural nets. Artificial intelligence (AI) methods have shown great capabilities in modelling, prediction and recognition tasks supporting human-machine interaction. At the same time, the issue of emotion has gained increasing attention due to its relevance in achieving human-like interaction with machines. The real challenge is taking advantage of the emotional characterization of humans' interactions to make computers interfacing with them emotionally and socially credible. The book assesses how and to what extent current sophisticated computational intelligence tools might support the multidisciplinary research on the characterization of appropriate system reactions to human emotions and expressions in interactive scenarios. Discussing the latest recent research trends, innovative approaches and future challenges in AI from interdisciplinary perspectives, it is a valuable resource for researchers and practitioners in academia and industry.
This is a companion textbook for an introductory course in physics. It aims to link the theories and models that students learn in class with practical problem-solving techniques. In other words, it should address the common complaint that 'I understand the concepts but I can't do the homework or tests'. The fundamentals of introductory physics courses are addressed in simple and concise terms, with emphasis on how the fundamental concepts and equations should be used to solve physics problems.
This book explores the fascinating and intimate relationship between music and physics. Over millennia, the playing of, and listening to music have stimulated creativity and curiosity in people all around the globe. Beginning with the basics, the authors first address the tonal systems of European-type music, comparing them with those of other, distant cultures. They analyze the physical principles of common musical instruments with emphasis on sound creation and particularly charisma. Modern research on the psychology of musical perception - the field known as psychoacoustics - is also described. The sound of orchestras in concert halls is discussed, and its psychoacoustic effects are explained. Finally, the authors touch upon the role of music for our mind and society. Throughout the book, interesting stories and anecdotes give insights into the musical activities of physicists and their interaction with composers and musicians.
This book is the first comprehensive tutorial on matheuristics. Matheuristics are based on mathematical extensions of previously known heuristics, mainly metaheuristics, and on original, area-specific approaches. This tutorial provides a detailed discussion of both contributions, presenting the pseudocodes of over 40 algorithms, abundant literature references, and for each case a step-by-step description of a sample run on a common Generalized Assignment Problem example. C++ source codes of all algorithms are available in an associated SW repository.
This proceedings volume features selected contributions from the conference Positivity X. The field of positivity deals with ordered mathematical structures and their applications. At the biannual series of Positivity conferences, the latest developments in this diverse field are presented. The 2019 edition was no different, with lectures covering a broad spectrum of topics, including vector and Banach lattices and operators on such spaces, abstract stochastic processes in an ordered setting, the theory and applications of positive semi-groups to partial differential equations, Hilbert geometries, positivity in Banach algebras and, in particular, operator algebras, as well as applications to mathematical economics and financial mathematics. The contributions in this book reflect the variety of topics discussed at the conference. They will be of interest to researchers in functional analysis, operator theory, measure and integration theory, operator algebras, and economics. Positivity X was dedicated to the memory of our late colleague and friend, Coenraad Labuschagne. His untimely death in 2018 came as an enormous shock to the Positivity community. He was a prominent figure in the Positivity community and was at the forefront of the recent development of abstract stochastic processes in a vector lattice context.
Caustics are natural phenomena, forming light patterns in rainbows or through drinking glasses, and creating light networks at the bottom of swimming pools. Only in recent years have scientists started to artificially create simple caustics with laser light. However, these realizations have already contributed to progress in advanced imaging, lithography, and micro-manipulation. In this book, Alessandro Zannotti pioneers caustics in many ways, establishing the field of artificial caustic optics. He employs caustic design to customize high-intensity laser light. This is of great relevance for laser-based machining, sensing, microscopy, and secure communication. The author also solves a long standing problem concerning the origin of rogue waves which appear naturally in the sea and can have disastrous consequences. By means of a far-reaching optical analogy, he identifies scattering of caustics in random media as the origin of rogue waves, and shows how nonlinear light-matter interaction increases their probability.
This proceedings is focused on the emerging concept of Collaborative Innovation Networks (COINs). COINs are at the core of collaborative knowledge networks, distributed communities taking advantage of the wide connectivity and the support of communication technologies, spanning beyond the organizational perimeter of companies on a global scale. The book presents the refereed conference papers from the 7th International Conference on COINs, October 8-9, 2019, in Warsaw, Poland. It includes papers for both application areas of COINs, (1) optimizing organizational creativity and performance, and (2) discovering and predicting new trends by identifying COINs on the Web through online social media analysis. Papers at COINs19 combine a wide range of interdisciplinary fields such as social network analysis, group dynamics, design and visualization, information systems and the psychology and sociality of collaboration, and intercultural analysis through the lens of online social media. They will cover most recent advances in areas from leadership and collaboration, trend prediction and data mining, to social competence and Internet communication.
The main goal of this book is to systematically address the mathematical methods that are applied in the study of synchronization of infinite-dimensional evolutionary dissipative or partially dissipative systems. It bases its unique monograph presentation on both general and abstract models and covers several important classes of coupled nonlinear deterministic and stochastic PDEs which generate infinite-dimensional dissipative systems. This text, which adapts readily to advanced graduate coursework in dissipative dynamics, requires some background knowledge in evolutionary equations and introductory functional analysis as well as a basic understanding of PDEs and the theory of random processes. Suitable for researchers in synchronization theory, the book is also relevant to physicists and engineers interested in both the mathematical background and the methods for the asymptotic analysis of coupled infinite-dimensional dissipative systems that arise in continuum mechanics.
The cooperation and contamination between mathematicians, statisticians and econometricians working in actuarial sciences and finance is improving the research on these topics and producing numerous meaningful scientific results. This volume presents new ideas, in the form of four- to six-page papers, presented at the International Conference eMAF2020 - Mathematical and Statistical Methods for Actuarial Sciences and Finance. Due to the now sadly famous COVID-19 pandemic, the conference was held remotely through the Zoom platform offered by the Department of Economics of the Ca' Foscari University of Venice on September 18, 22 and 25, 2020. eMAF2020 is the ninth edition of an international biennial series of scientific meetings, started in 2004 at the initiative of the Department of Economics and Statistics of the University of Salerno. The effectiveness of this idea has been proven by wide participation in all editions, which have been held in Salerno (2004, 2006, 2010 and 2014), Venice (2008, 2012 and 2020), Paris (2016) and Madrid (2018). This book covers a wide variety of subjects: artificial intelligence and machine learning in finance and insurance, behavioral finance, credit risk methods and models, dynamic optimization in finance, financial data analytics, forecasting dynamics of actuarial and financial phenomena, foreign exchange markets, insurance models, interest rate models, longevity risk, models and methods for financial time series analysis, multivariate techniques for financial markets analysis, pension systems, portfolio selection and management, real-world finance, risk analysis and management, trading systems, and others. This volume is a valuable resource for academics, PhD students, practitioners, professionals and researchers. Moreover, it is also of interest to other readers with quantitative background knowledge.
The increasing complexity of economic problems, coupled with advances in numerical methods and computer architectures, have stimulated the growth and interest in computational economics. Accompanying this activity is the need for the unification, documentation and presentation of fundamental methodologies for use by researchers and practitioners. "Network Economics: A Variational Inequality Approach" makes a contribution in this direction by providing a treatment of the theory of finite-dimensional variational inequalities, algorithms and applications. The focus of the volume is on network economics. Physical networks are pervasive in today's society in the form of transportation network, energy networks, financial networks, whereas mathematical networks provide a mechanism for studying a plethora of economic equilibirum problems through a common graphic structure. "Network Economics" establishes the connections among economic equilibrium problems through their network structure and demonstrates how the structure can then be used to address policy interventions, as well as to construct efficient numerical schemes for the computation of equilibria. The network framework provides not only a mechanism for the graphic representation of economic problems and a means for visualizing their similarities and differences, but in addition, a novel theoretical approach. Problems treated include congested transportation systems, oligopolistic market equilibrium problems, problems, of human migration and general financial equilibrium problems.
This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.
This book is a sequel to Lectures on Selected Topics in Mathematical Physics: Introduction to Lie Theory with Applications. This volume is devoted mostly to Lie groups. Lie algebras and generating functions, both for standard special functions and for solution of certain types of physical problems. It is an informal treatment of these topics intended for physics graduate students or others with a physics background wanting a brief and informal introduction to the subjects addressed in a style and vocabulary not completely unfamiliar.
This companion piece to the author's 2018 book, A Software Repository for Orthogonal Polynomials, focuses on Gaussian quadrature and the related Christoffel function. The book makes Gauss quadrature rules of any order easily accessible for a large variety of weight functions and for arbitrary precision. It also documents and illustrates known as well as original approximations for Gauss quadrature weights and Christoffel functions. The repository contains 60 datasets, each dealing with a particular weight function. Included are classical, quasi-classical, and, most of all, nonclassical weight functions and associated orthogonal polynomials.
This book discusses recent developments in dynamic reliability in multi-state systems (MSS), addressing such important issues as reliability and availability analysis of aging MSS, the impact of initial conditions on MSS reliability and availability, changing importance of components over time in MSS with aging components, and the determination of age-replacement policies. It also describes modifications of traditional methods, such as Markov processes with rewards, as well as a modern mathematical method based on the extended universal generating function technique, the Lz-transform, presenting various successful applications and demonstrating their use in real-world problems. This book provides theoretical insights, information on practical applications, and real-world case studies that are of interest to engineers and industrial managers as well as researchers. It also serves as a textbook or supporting text for graduate and postgraduate courses in industrial, electrical, and mechanical engineering.
This thesis focuses on experimental studies on collective motion using swimming bacteria as model active-matter systems. It offers comprehensive reviews of state-of-the-art theories and experiments on collective motion from the viewpoint of nonequilibrium statistical physics. The author presents his experimental studies on two major classes of collective motion that had been well studied theoretically. Firstly, swimming filamentous bacteria in a thin fluid layer are shown to exhibit true, long-range orientational order and anomalously strong giant density fluctuations, which are considered universal and landmark signatures of collective motion by many numerical and theoretical works but have never been observed in real systems. Secondly, chaotic bacterial turbulence in a three-dimensional dense suspension without any long-range order as described in the first half is demonstrated to be capable of achieving antiferromagnetic vortex order by imposing a small number of constraints with appropriate periodicity. The experimental results presented significantly advance our fundamental understanding of order and fluctuations in collective motion of motile elements and their future applications.
This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book's final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.
This book commemorates the 75th birthday of Prof. George Jaiani - Georgia's leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book explores the impact of nonlinearity on a broad range of areas, including time-honored fields such as biology, geometry, and topology, but also modern ones such as quantum mechanics, networks, metamaterials and artificial intelligence. The concept of nonlinearity is a universal feature in mathematics, physics, chemistry and biology, and is used to characterize systems whose behavior does not amount to a superposition of simple building blocks, but rather features complex and often chaotic patterns and phenomena. Each chapter of the book features a synopsis that not only recaps the recent progress in each field but also charts the challenges that lie ahead. This interdisciplinary book presents contributions from a diverse group of experts from various fields to provide an overview of each field's past, present and future. It will appeal to both beginners and seasoned researchers in nonlinear science, numerous areas of physics (optics, quantum physics, biophysics), and applied mathematics (ODEs, PDEs, dynamical systems, machine learning) as well as engineering.
This book provides readers with a comprehensive and recent exposition in deep learning and its multidisciplinary applications, with a concentration on advances of deep learning architectures. The book discusses various artificial intelligence (AI) techniques based on deep learning architecture with applications in natural language processing, semantic knowledge, forecasting and many more. The authors shed light on various applications that can benefit from the use of deep learning in pattern recognition, person re-identification in surveillance videos, action recognition in videos, image and video captioning. The book also highlights how deep learning concepts can be interwoven with more modern concepts to yield applications in multidisciplinary fields. Presents a comprehensive look at deep learning and its multidisciplinary applications, concentrating on advances of deep learning architectures; Includes a survey of deep learning problems and solutions, identifying the main open issues, innovations and latest technologies; Shows industrial deep learning in practice with examples/cases, efforts, challenges, and strategic approaches.
Mathematical finance is a prolific scientific domain in which there
exists a particular characteristic of developing both advanced
theories and practical techniques simultaneously. "Mathematical
Modelling and Numerical Methods in Finance" addresses the three
most important aspects in the field: mathematical models,
computational methods, and applications, and provides a solid
overview of major new ideas and results in the three domains.
|
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,484
Discovery Miles 34 840
Gallium Oxide - Technology, Devices and…
Steve Pearton, Fan Ren, …
Paperback
R5,270
Discovery Miles 52 700
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
|