![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics
This book demonstrates Microsoft EXCEL-based Fourier transform of selected physics examples. Spectral density of the auto-regression process is also described in relation to Fourier transform. Rather than offering rigorous mathematics, readers will "try and feel" Fourier transform for themselves through the examples. Readers can also acquire and analyze their own data following the step-by-step procedure explained in this book. A hands-on acoustic spectral analysis can be one of the ideal long-term student projects.
Holographic dualities are at the forefront of contemporary physics research, peering into the fundamental nature of our universe and providing best attempt answers to humankind's bold questions about basic physical phenomena. Yet, the concepts, ideas and mathematical rigors associated with these dualities have long been reserved for the specific field researchers and experts. This book shatters this long held paradigm by bringing several aspects of holography research into the class room, starting at the college physics level and moving up from there.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
Quartic anharmonic oscillator with potential V(x)= x(2) + g(2)x4 was the first non-exactly-solvable problem tackled by the newly-written Schroedinger equation in 1926. Since that time thousands of articles have been published on the subject, mostly about the domain of small g(2) (weak coupling regime), although physics corresponds to g(2) ~ 1, and they were mostly about energies.This book is focused on studying eigenfunctions as a primary object for any g(2). Perturbation theory in g(2) for the logarithm of the wavefunction is matched to the true semiclassical expansion in powers of : it leads to locally-highly-accurate, uniform approximation valid for any g(2) [0, ) for eigenfunctions and even more accurate results for eigenvalues. This method of matching can be easily extended to the general anharmonic oscillator as well as to the radial oscillators. Quartic, sextic and cubic (for radial case) oscillators are considered in detail as well as quartic double-well potential.
This book provides a concise introduction to both the special theory of relativity and the general theory of relativity. The format is chosen to provide the basis for a single semester course which can take the students all the way from the foundations of special relativity to the core results of general relativity: the Einstein equation and the equations of motion for particles and light in curved spacetime. To facilitate access to the topics of special and general relativity for science and engineering students without prior training in relativity or geometry, the relevant geometric notions are also introduced and developed from the ground up. Students in physics, mathematics or engineering with an interest to learn Einstein's theories of relativity should be able to use this book already in the second semester of their third year. The book could also be used as the basis of a graduate level introduction to relativity for students who did not learn relativity as part of their undergraduate training.
Using the familiar software Microsoft ® Excel, this book examines the applications of complex variables. Implementation of the included problems in Excel eliminates the “black box” nature of more advanced computer software and programming languages and therefore the reader has the chance to become more familiar with the underlying mathematics of the complex variable problems. This book consists of two parts. In Part I, several topics are covered that one would expect to find in an introductory text on complex variables. These topics include an overview of complex numbers, functions of a complex variable, and the Cauchy integral formula. In particular, attention is given to the study of analytic complex variable functions. This attention is warranted because of the property that the real and imaginary parts of an analytic complex variable function can be used to solve the Laplace partial differential equation (PDE). Laplace's equation is ubiquitous throughout science and engineering as it can be used to model the steady-state conditions of several important transport processes including heat transfer, soil-water flow, electrostatics, and ideal fluid flow, among others. In Part II, a specialty application of complex variables known as the Complex Variable Boundary Element Method (CVBEM) is examined. CVBEM is a numerical method used for solving boundary value problems governed by Laplace's equation. This part contains a detailed description of the CVBEM and a guide through each step of constructing two CVBEM programs in Excel. The writing of these programs is the culminating event of the book. Students of complex variables and anyone with interest in a novel method for approximating potential functions using the principles of complex variables are the intended audience for this book. The Microsoft Excel applications (including simple programs as well as the CVBEM program) covered will also be of interest in the industry, as these programs are accessible to anybody with Microsoft Office.
Basic mathematical techniques for partial differential equations (PDE) with applications to the life sciences form an integral part of the core curriculum for programs in mathematical biology. Yet, students in such a program with an undergraduate training in biology are typically deficient in any exposure to PDE. This volume starts with simple first order PDE and progresses through higher order equations and systems but with interesting applications, even at the level of a single first order PDE with constant coefficients.Similar to the two previous volumes by the author, another unique feature of the book is highlighting the scientific theme(s) of interest for the biological phenomena being modelled and analysed. In addition to temporal evolution of a biological phenomenon, its limiting equilibrium states and their stability, the possibility of locational variations leads to a study of additional themes such as (signal and wave) propagation, spatial patterning and robustness. The requirement that biological developments are relatively insensitive to sustained environmental changes provides an opportunity to examine the issue of feedback and robustness not encountered in the previous two volumes of this series.
The present monograph on stochastic Komatu-Loewner evolutions (SKLEs) provides the first systematic extension of the Schramm-Loewner evolution (SLE) theory from a simply connected planar domain to multiply connected domains by using the Brownian motion with darning (BMD) that has arisen in a recent study of the boundary theory of symmetric Markov processes.This volume is presented in an accessible manner for the interested researchers and graduate students. It also brings new insights into SLEs as special cases of SKLEs. Mathematically, it can be viewed as a powerful application of stochastic analysis via BMDs to complex analysis.
The Institute for Mathematical Sciences at the National University of Singapore hosted a thematic program on Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications from September 2019 to March 2020. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects six expanded lecture notes with self-contained tutorials. The coverage includes mathematical models and numerical methods for multidimensional solitons in linear and nonlinear potentials; Bose-Einstein condensation (BEC) with dipole-dipole interaction, higher order interaction and spin-orbit coupling; classical and quantum turbulence; and molecular dynamics process based on the first-principle in quantum chemistry.This volume serves to inspire graduate students and researchers who will embark into original research work in these fields.
The thematic program Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications was held at the Institute for Mathematical Sciences at the National University of Singapore, from September 2019 to March 2020. Leading experts presented tutorials and special lectures geared towards the participating graduate students and junior researchers.Readers will find in this significant volume four expanded lecture notes with self-contained tutorials on modeling and simulation for collective dynamics including individual and population approaches for population dynamics in mathematical biology, collective behaviors for Lohe type aggregation models, mean-field particle swarm optimization, and consensus-based optimization and ensemble Kalman inversion for global optimization problems with constraints.This volume serves to inspire graduate students and researchers who will embark into original research work in kinetic models for collective dynamics and their applications.
This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB (R) is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.
Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians - with limited knowledge of nonlinear dynamics - to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework - condensed from sound empirical practices recommended in the literature - that details a step-by-step procedure for applying NLTS in real-world data diagnostics.
A recent development is the discovery that simple systems of equations can have chaotic solutions in which small changes in initial conditions have a large effect on the outcome, rendering the corresponding experiments effectively irreproducible and unpredictable. An earlier book in this sequence, Elegant Chaos: Algebraically Simple Chaotic Flows provided several hundred examples of such systems, nearly all of which are purely mathematical without any obvious connection with actual physical processes and with very limited discussion and analysis.In this book, we focus on a much smaller subset of such models, chosen because they simulate some common or important physical phenomenon, usually involving the motion of a limited number of point-like particles, and we discuss these models in much greater detail. As with the earlier book, the chosen models are the mathematically simplest formulations that exhibit the phenomena of interest, and thus they are what we consider 'elegant.'Elegant models, stripped of unnecessary detail while maximizing clarity, beauty, and simplicity, occupy common ground bordering both real-world modeling and aesthetic mathematical analyses. A computational search led one of us (JCS) to the same set of differential equations previously used by the other (WGH) to connect the classical dynamics of Newton and Hamilton to macroscopic thermodynamics. This joint book displays and explores dozens of such relatively simple models meeting the criteria of elegance, taste, and beauty in structure, style, and consequence.This book should be of interest to students and researchers who enjoy simulating and studying complex particle motions with unusual dynamical behaviors. The book assumes only an elementary knowledge of calculus. The systems are initial-value iterated maps and ordinary differential equations but they must be solved numerically. Thus for readers a formal differential equations course is not at all necessary, of little value and limited use.
Extremum Seeking through Delays and PDEs, the first book on the topic, expands the scope of applicability of the extremum seeking method, from static and finite-dimensional systems to infinite-dimensional systems. Readers will find: Numerous algorithms for model-free real-time optimization are developed and their convergence guaranteed. Extensions from single-player optimization to noncooperative games, under delays and pdes, are provided. The delays and pdes are compensated in the control designs using the pde backstepping approach, and stability is ensured using infinite-dimensional versions of averaging theory. Accessible and powerful tools for analysis. This book is intended for control engineers in all disciplines (electrical, mechanical, aerospace, chemical), mathematicians, physicists, biologists, and economists. It is appropriate for graduate students, researchers, and industrial users.
This book contains an extensive illustration of use of finite difference method in solving the boundary value problem numerically. A wide class of differential equations has been numerically solved in this book. Starting with differential equations of elementary functions like hyperbolic, sine and cosine, we have solved those of special functions like Hermite, Laguerre and Legendre. Those of Airy function, of stationary localised wavepacket, of the quantum mechanical problem of a particle in a 1D box, and the polar equation of motion under gravitational interaction have also been solved. Mathematica 6.0 has been used to solve the system of linear equations that we encountered and to plot the numerical data. Comparison with known analytic solutions showed nearly perfect agreement in every case. On reading this book, readers will become adept in using the method.
Uncertainties in GPS Positioning: A Mathematical Discourse describes the calculations performed by a GPS receiver and the problems associated with ensuring that the derived location is a close match to the actual location. Inaccuracies in calculating a location can have serious repercussions, so this book is a timely source for information on this rapidly evolving technology.
Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory.
For a physicist, "noise" is not just about sounds, but refers to any random physical process that blurs measurements, and in so doing stands in the way of scientific knowledge. This book deals with the most common types of noise, their properties, and some of their unexpected virtues. The text explains the most useful mathematical concepts related to noise. Finally, the book aims at making this subject more widely known and to stimulate the interest for its study in young physicists.
The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation.The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space.The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Time and Methods in Environmental Interfaces Modelling: Personal Insights considers the use of time in environmental interfaces modeling and introduce new methods, from the global scale (e.g. climate modeling) to the micro scale (e.g. cell and nanotubes modeling), which primarily arise from the personal research insights of the authors. As the field of environmental science requires the application of new fundamental approaches that can lead to a better understanding of environmental phenomena, this book helps necessitate new approaches in modeling, including category theory, that follow new achievements in physics, mathematics, biology, and chemistry. |
You may like...
Polynomial Chaos Methods for Hyperbolic…
Mass Per Pettersson, Gianluca Iaccarino, …
Hardcover
R3,999
Discovery Miles 39 990
Bitcoin And Cryptocurrency - The…
Crypto Trader & Crypto Gladiator
Hardcover
Acts of the Legislative Council of the…
Florida Legislative Council
Paperback
R507
Discovery Miles 5 070
|