![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Cellular biology
Volume 3 of Biomembranes covers receptors of cell adhesion and
cellular recognition. Proteins in the plasma membrane of cells are
heavily involved in processes of cell adhesion, but such proteins
were not actually isolated and characterized until the mid-1970s.
Since then, application of the methods of molecular biology has led
to the recognition of four major classes of cell adhesion molecule
(CAMs), the immunoglobulin super family, the cadherins, the
integrins, and the selecting. A convenient system in which to study
the importance of cell adhesion is in blood platelets where
aggregation eventually leads to thrombus formation in a process
involving a range of surface glycoproteins. Interaction with the
extracellular matrix is exemplified by CD44, the receptor for
hyaluronan, and a complex carbohydrate that is a major component of
the extracellular matrix surrounding migrating and proliferating
cells. Membrane-associated mucins have a variety of effects on cell
adhesion. The super family of immunoglobulin related proteins also
include the T cell receptors and the major histocompatibility
complex (MHC), which, together with the receptors for
immunoglobulins (the Fc receptors), are of fundamental importance
in the processes of immunity. Volume 3 of Biomembranes explores the
structures and functions of the molecules involved in these
important functions of the cell.
Developed for a range of tissues where the culture environment takes into account the spatial organization of the cells therein, 3D cell culture models serve to bridge the gap between in vivo studies at one extreme with that of simple cell monolayers at the other. In 3D Cell Culture: Methods and Protocols, international experts describe a number of basic and applied methodologies taken from a breadth of scientific and engineering disciplines, many of which deal with direct applications of 3D culture models, most notably in the formation of tissues for clinical purpose. Beginning with an overview of the biological and materials scaffold requirements for successfully creating 3D models, the book delves into topics such as general scaffold design and fabrication techniques, models for bone, skin, cartilage, nerve, bladder, and hair follicles, and chapters on bioreactor design, imaging, and stem cells. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective subjects, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, 3D Cell Culture: Methods and Protocols serves as a basic manual for laboratory-based scientists who not only need to have a comprehensive range of techniques contained within a single text but also require techniques described using a standard, convenient format.
This detailed volume presents a comprehensive technical overview of DNA nanotechnology with an emphasis on 3D DNA nanostructure design and applications. Coverage spans from basic design principles for DNA and RNA nanostructures to their cutting-edge applications in a variety of fields, with the book divided into basic DNA and RNA nanostructure design strategies as well as applications utilizing DNA nanostructures, including but not limited to nanomedicine, bioimaging, biosensing, nanoplasmonics, nanoelectronics, nanofabrication, crystallography, biophysics, and analytical chemistry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, 3D DNA Nanostructure: Methods and Protocols provides the most up-to-date tutorial style overviews and technical style protocols to benefit researchers in a wide variety of areas.
One of the major goals of researchers in the field of apoptosis is
to identify targets for novel therapies in cancer, AIDS, and
Alzheimer s disease. Understanding the molecular mechanisms of the
various components of the apoptotic pathways is the first step to
reaching this goal.
The current scenario of increasing sensitivity towards the sustainable agriculture has given a large space to extensively utilize natural resources that are environmental friendly and are a good replacement of chemicals in agriculture. Application of organic additives in the sustainable disease management can provide new insight in sustenance of plant productivity along with improved host stress tolerance. In the present book we have focussed upon a range of organic strategies to control plant pathogens of wide spectrum in addition to maintaining robust plant health. A detailed account on the application of organic additives has been discussed, irrespective of their origin and nature. In addition, the methods of utilising these organic supplements in the management of plant diseases and promotion of plant yield in more economic way have also been presented with reference to developing, underdeveloped and developed countries. The book has included the works of eminent scholars from across the world thus flashing light on the key literature related to application of organic matters including phytoextracts, chopped leaves, composted organic manures and liquid manures in eco-friendly agriculture. The mechanisms underlying the effectiveness of these organic amendments in promoting plant health has also been presented and discussed in understandable ways.
This book presents a collection of articles on various aspects of current research on aging. These include model systems, cellular, biochemical and molecular aspects of experimental aging research, as well as selected intervention studies on age-related diseases. Aging is a global challenge to human society. Children are always in a hurry to become adults, while adults produce offspring and add to the gene pool. However, after adulthood or the attainment of reproductive maturity, all physiological parameters of the living organism start to undergo the aging process. Old age sets in slowly but surely, and usually continues for a prolonged period. If vigor and vitality are the main advantages of adulthood, old age offers the rewards of experience and maturity. Biologists ask questions such as: Why do we age? How do we become old? Is it possible to slow down, postpone or even prevent aging? In turn, medical experts ask: What are the diseases associated with old age? Are there medicines that can help affected elderly patients? In fact both groups are asking themselves how can we add more health to old age. Healthy aging is the dream of every individual. But to achieve this, it is fundamental that we first understand the cellular, biochemical and molecular basis of the aging process in mammalian cells, tissues and intact living organisms, which can serve as experimental model systems in Biomedical Gerontology. Once the biology of aging is understood at the genetic and molecular levels, interventional approaches to aging and its associated diseases may be easier to plan and implement at the preclinical level.
This book will cover both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as diagnostics and treatment regimes. A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that that less than 0.1% of the total microbial biomass lives in the planktonic mode of growth. The term was coined in 1978 by Costerton et al. who defined the term biofilm for the first time.In 1993 the American Society for Microbiology (ASM) recognised that the biofilmmode of growth was relevant to microbiology. Lately many articles have been published on the clinical implications of bacterial biofilms. Both original articles and reviews concerning the biofilm problem are available.
Myxobacteria have fascinated generations of scientists since their discovery over a century ago. These bacteria represent the epitome of complex prokaryotic behaviour. In this book, expert myxobiologists describe important recent advances in understanding their behaviour at a molecular and cellular level.
This volume explores various methodologies to study biochemical, molecular, and cellular biology aspects of some processes regulated by protein SUMOylation. SUMO: Methods and Protocols is organized into four parts, and starts with an historical overview on protein SUMOylation and a presentation of the methods included in the book. The first part also includes a review on chromatin regulation by dynamic SUMO modifications. The second part focuses on in vitro techniques, including biochemical methods to study mechanistic aspects of protein SUMOylation. The third part includes protocols to be used with cell cultures, which often are the first approaches used in most laboratories. The final part includes methodologies adapted for the analysis in vivo using distinct model organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include a brief introduction to the subject, a list of necessary materials and reagents, a step-by-step reproducible laboratory protocol ending with a Notes section on troubleshooting tips, and tips and strategies to avoid known pitfalls. Unique and cutting-edge, SUMO: Methods and Protocols provides a comprehensive source of protocols for specialists and researchers not familiar with this vital system.
DESCRIPTION:
This second volume in the series covers such topics as DNA fingerprinting of fishes, the cytochromes P450 in fish, the molecular biology of bacterial fish diseases, and new insights into the origins of the diversity and distribution of fish antifreeze proteins. The book will be of great value to fisheries scientists, animal biochemists, physiologists and endocrinologists, and aquaculturists. It will provide researchers and students alike with a pertinent information source from theoretical and experimental angles.
The volume dwells on the major issues of mechanical stress influencing the ion channels and intracellular signaling pathways. This book is a unique collection of reviews outlining current knowledge and future developments in this rapidly growing field. In our opinion the book presents not only the latest achievements in the field but also brings the problem closer to the experts in related medical and biological sciences as well as practicing doctors. Knowledge of the mechanisms which underlie these processes is necessary for understanding of the normal functioning of different living organs and tissues and allows to predict changes, which arise due to alterations of their environment, and possibly will allow to develop new methods of artificial intervention. We also hope that presenting the problem will attract more attention to it both from researchers and practitioners and will assist to efficiently introduce it into the practical medicine.
At the intersection of metabolite analysis, metabolic fingerprinting, and metabolomics, the study of metabolic profiling has evolved steadily over the course of time as have the methods and technologies involved in its study. In Metabolic Profiling: Methods and Protocols, expert researchers in the field present protocols that are illustrative of the evolution of metabolic profiling from single molecule analysis to global metabolome profiling. Comprised of the most essential techniques, this volume covers topics from inborn errors of metabolism and drug metabolite analysis to nuclear magnetic resonance metabolic profiles. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Metabolic Profiling: Methods and Protocols serves as a resource for both established and new investigators in this vital and ever-developing field.
The 2002 Nobel Prize in Physiology or Medicine was awarded to
Sydney Brenner (United Kingdom), H. Robert Horvitz (US) and John E.
Sulston (UK) "for their discoveries concerning genetic regulation
of organ development and programmed cell death." Cell death is a
fundamental aspect of embryonic development, normal cellular
turnover and maintenance of homeostasis (maintaining a stable,
constant environment) on the one hand, and aging and disease on the
other. This volume addresses the significant advances with the
techniques that are being used to analyze cell death.
Over the last decades cell biology and biological chemistry have increasingly turned their attention to the space between cells and revealed an elaborate network of macromolecules essential for structural support, cell adhesion and signaling. This comprehensive handbook of the extracellular matrix will give an overview of the current state of knowledge of matrix components (structure and function), their role in heath and disease (matrix pathobiology) and new aspects related to pharmacological targeting. It will provide an introduction to the extracellular matrix and detailed sections and chapters on: Importance of extracellular matrix in health and disease Matrix proteoglycans (aggrecan, versican, perlecan, SLRPs, syndecans, glypicans, serglycin) Matrix proteinases (remodeling, would healing, regulatory roles in health and disease, metalloproteinases, cystein proteases, plasmin and plasminogen activator system) Glycobiology (hyaluronan and sulfated glycosaminoglycans in cancer, inflammation and metabolic control) Collagens (supramolecular assembly, proteins binding collagen, scaffolds, bacterial and mutated collagens, procollagen proteinases) Cell surface receptors (integrins, syndecans, mechanical strain and TGFb, CD44 and DDR). Biotechnological and pharmacological outlook (matrix regulation by growth factors, hyaluronidases, pathobiology, disease targeting, delivery systems, EMT and proteomics). "The book Extracellular Matrix: Pathobiology and Signaling provides a comprehensive and up to date collection of very relevant topics for understanding the various facets of extracellular matrix and its interactions with cells in normal tissue as well as in disease. It represents the current front-line and will serve as a reference for extracellular matrix and posttranslational modifications." Dick Heinegard, Department of Clinical Sciences Lund, Section Rheumatology, Lund University, Sweden
Chloroplasts are vital for life as we know it. At the leaf cell level, it is common knowledge that a chloroplast interacts with its surroundings - but this knowledge is often limited to the benefits of oxygenic photosynthesis and that chloroplasts provide reduced carbon, nitrogen and sulphur. This book presents the intricate interplay between chloroplasts and their immediate and more distant environments. The topic is explored in chapters covering aspects of evolution, the chloroplast/cytoplasm barrier, transport, division, motility and bidirectional signalling. Taken together, the contributed chapters provide an exciting insight into the complexity of how chloroplast functions are related to cellular and plant-level functions. The recent rapid advances in the presented research areas, largely made possible by the development of molecular techniques and genetic screens of an increasing number of plant model systems, make this interaction a topical issue.
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book's last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.
This book provides readers with an overview of the frequent occurrence of asymmetric cell division. Employing a broad range of examples, it highlights how this mode of cell division constitutes the basis of multicellular organism development and how its misregulation can lead to cancer. To underline such developmental correlations, readers will for example gain insights into stem cell fate and tumor growth. In turn, subsequent chapters include descriptions of asymmetric cell division from unicellular organisms to humans in both physiological and pathological conditions. The book also illustrates the importance of this process for evolution and our need to understand the background mechanisms, offering a valuable guide not only for students in the field of developmental biology but also for experienced researchers from neighboring fields.
"Mechanobiology of Cell-Matrix Interactions" focuses on characterization and modeling of interactions between cells and their local extracellular environment, exploring how these interactions may mediate cell behavior. Studies of cell-matrix interactions rely on integrating engineering, (molecular and cellular) biology, and imaging disciplines. Recent advances in the field have begun to unravel our understanding of how cells gather information from their surrounding environment, and how they interrogate such information during the cell fate decision making process. Topics include adhesive and integrin-ligand interactions; extracellular influences on cell biology and behavior; cooperative mechanisms of cell-cell and cell-matrix interactions; the mechanobiology of pathological processes; (multi-scale) modeling approaches to describe the complexity or cell-matrix interactions; and quantitative methods required for such experimental and modeling studies.
The intent in initiating this volume was to bring together a series
of essays which would define our present understanding of the
endosome and lysosome and their interrelationship. The editors
deliberately encouraged the contributors to be speculative; to
strive to put order to the "real" world of incomplete and sometimes
conflicting data. Seeing science from the laboratory bench can
often be like viewing an impressionistic painting from up close; a
series of paint dabs with no apparent order. The contributors to
this volume were asked to step back and leave the reader with a
sense of the whole as well as the detail. To the extent that this
has happened, the credit should go to the individual authors.
This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their application to practical issues related to design and operation of biological systems. Intended as a self-contained textbook for students in biotechnology and in industrial, chemical and biomedical engineering, this book will also represent a useful reference guide for professionals working in the above-mentioned fields.
This book presents a collection of expert reviews on different subcellular compartments of the cardiomyocyte, addressing fundamental questions such as how these compartments are assembled during development, how they are changed in and by disease and which signaling pathways have been implicated in these processes so far. As such, it offers the first overview of the cell biology of heart disease of its kind, addressing the needs of cell biology students specializing in vascular and cardiac biology, as well as those of cardiologists and researchers in the field of cell biology.
This book covers topics on mechanosensing, mechanotransduction, and actin cytoskeletal dynamics in cell motility. It will contribute to a better understanding of how cells functionally adapt to their mechanical environment as well as highlighting fundamental concepts for designing material niches for cell manipulation. With topics from multidisciplinary fields of the life sciences, medicine and engineering, the book is the first of its kind, providing comprehensive, integrated coverage of innovative approaches to cell biomechanics. It provides a valuable resource for seniors and graduate students studying cell biomechanics and is also suitable for researchers interested in the application of methods and strategies in connection with the innovative approaches discussed. Each section of the book has been supplemented with concrete examples and illustrations to facilitate understanding even for readers unfamiliar with cell biomechanics.
This book presents the Proceedings of ICON-2019, an international meeting exclusively dedicated to nanostructured materials in medicinal applications. The conference emphasized the recent advances in multidisciplinary research on processing, morphology, structure and properties of nanostructured materials and their applications in various medicinal fields. The papers encompass basic studies and applications and address topics of novel issues, difficulties, and breakthroughs in the field of nanomedicine in cancer, tuberculosis, tissue engineering, regenerative medicine etc.
Immunoelectron microscopy is a key technique that bridges the information gap between biochemistry, molecular biology, and ultrastructural studies placing macromolecular functions within a cellular context. In Immunoelectron Microscopy: Methods and Protocols, expert researchers combine the tools of the molecular biologist with those of the microscopist. From the molecular biology toolbox, this volume presents methods for antigen production by protein expression in bacterial cells, methods for epitope tagged protein expression in plant and animal cells allowing protein localization in the absence of protein specific antibodies as well as methods for the production of anti-peptide, monoclonal, and polyclonal antibodies. From the microscopy toolbox, sample preparation methods for cells, plant, and animal tissue are presented. Both cryo-methods, which have the advantage of retaining protein antigenicity at the expense of ultrastructural integrity, as well as chemical fixation methods that maintain structural integrity while sacrificing protein antigenicity have been included, with chapters examining various aspects of immunogold labeling. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and essential, Immunoelectron Microscopy: Methods and Protocols seeks to facilitate an increased understanding of structure function relationships. |
You may like...
Hykie Berg: My Storie van Hoop
Hykie Berg, Marissa Coetzee
Paperback
Girl, Missing - The top-ten bestselling…
Sophie McKenzie
Paperback
(2)
|