![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Cellular biology
This is the companion volume to Daniel Klionsky's "Autophagy: Lower
Eukaryotes," which features the basic methods in autophagy covering
yeasts and alternative fungi (aspergillus, podospora, magnaporthe).
Klionsky is one of the leading authorities in the field. He is the
editor-in-chief of "Autophagy," The November 2007 issue of "Nature
Reviews" highlighted his article, "Autophagy: from phenomenology to
molecular understanding in less than a decade." He is currently
editing guidelines for the field, with 230 contributing authors,
that will publish in "Autophagy,"
"Mechanobiology of Cell-Matrix Interactions" focuses on characterization and modeling of interactions between cells and their local extracellular environment, exploring how these interactions may mediate cell behavior. Studies of cell-matrix interactions rely on integrating engineering, (molecular and cellular) biology, and imaging disciplines. Recent advances in the field have begun to unravel our understanding of how cells gather information from their surrounding environment, and how they interrogate such information during the cell fate decision making process. Topics include adhesive and integrin-ligand interactions; extracellular influences on cell biology and behavior; cooperative mechanisms of cell-cell and cell-matrix interactions; the mechanobiology of pathological processes; (multi-scale) modeling approaches to describe the complexity or cell-matrix interactions; and quantitative methods required for such experimental and modeling studies.
Driven in part by the development of genomics, proteomics, and
bioinformatics as new disciplines, there has been a tremendous
resurgence of interest in physical methods to investigate
macromolecular structure and function in the context of living
cells. This volume in "Methods in Cell Biology" is devoted to
biophysical techniques "in vivo" and their applications to cellular
biology. The volume covers methods-oriented chapters on fundamental
as well as cutting-edge techniques in molecular and cellular
biophysics. This book is directed toward the broad audience of cell
biologists, biophysicists, pharmacologists, and molecular
biologists who employ classical and modern biophysical technologies
or wish to expand their expertise to include such approaches. It
will also interest the biomedical and biotechnology communities for
biophysical characterization of drug formulations prior to FDA
approval.
This book covers topics on mechanosensing, mechanotransduction, and actin cytoskeletal dynamics in cell motility. It will contribute to a better understanding of how cells functionally adapt to their mechanical environment as well as highlighting fundamental concepts for designing material niches for cell manipulation. With topics from multidisciplinary fields of the life sciences, medicine and engineering, the book is the first of its kind, providing comprehensive, integrated coverage of innovative approaches to cell biomechanics. It provides a valuable resource for seniors and graduate students studying cell biomechanics and is also suitable for researchers interested in the application of methods and strategies in connection with the innovative approaches discussed. Each section of the book has been supplemented with concrete examples and illustrations to facilitate understanding even for readers unfamiliar with cell biomechanics.
Display technologies have become a very powerful way of generating therapeutic lead molecules and specific reagents for increasing our understanding of biology; however, despite being first described shortly after phage display, the use of ribosome display and related methods have been much less widespread. Since this is in part due to the complexity of the methods, "Ribosome Display and Related Technologies: Methods and Protocols" seeks to extend their use by collecting expert contributions describing these detailed protocols. The protocols described range from well-established methods that have been used for a decade to generate high affinity antibodies, which are already in the clinic, to methods that are in their early stages of application such as display of peptides incorporating non-canonical amino acids. Written in the highly successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Invaluable and easy to use, "Ribosome Display and Related Technologies: Methods and Protocols" will be of great benefit to those with general molecular biology or protein engineering experience who wish to select peptides or proteins by display, those with phage display experience who would benefit from the application of ribosome display, as well as those with some ribosome display experience who would like to expand the range of applications to which they are applying the technology."
Chloroplasts are vital for life as we know it. At the leaf cell level, it is common knowledge that a chloroplast interacts with its surroundings - but this knowledge is often limited to the benefits of oxygenic photosynthesis and that chloroplasts provide reduced carbon, nitrogen and sulphur. This book presents the intricate interplay between chloroplasts and their immediate and more distant environments. The topic is explored in chapters covering aspects of evolution, the chloroplast/cytoplasm barrier, transport, division, motility and bidirectional signalling. Taken together, the contributed chapters provide an exciting insight into the complexity of how chloroplast functions are related to cellular and plant-level functions. The recent rapid advances in the presented research areas, largely made possible by the development of molecular techniques and genetic screens of an increasing number of plant model systems, make this interaction a topical issue.
"International Review of Cell & Molecular Biology" presents
current advances and comprehensive reviews in cell biology-both
plant and animal. Articles address structure and control of gene
expression, nucleocytoplasmic interactions, control of cell
development and differentiation and cell transformation and growth.
Cancer still remains a most important killer and even though synthetic chemotherapeutic agents are currently used, they are cost-intensive and do not always meet the expectations. In parallel, there is increasing evidence for the potential of nature-derived compounds on the inhibition of different steps of cancer initiation, promotion and progression. We believe that all diseases can be found in Nature but that Nature also provides the efficient cures as said the Prophet of Allah: Allah did not create any illness without also creating the remedy . The content of this book gives a multi-disciplinary approach into the anti-cancer research field related to natural products and dietary compounds. Mainly, it covers the area of antitumor activity through an in-depth description of the cytotoxic, anti-inflammatory and anti-oxidant properties in cancer, inflammatory and cardio-vascular diseases. The cell death inducing mechanisms (apoptosis, anti-proliferative activity, angiogenesis, cell cycle control, cytostatic property and autophagy) give an overview of how natural products are able to target cancer cells. We believe that all diseases can be found in Nature but that Nature also provides the efficient cures as said the Prophet of Allah: Allah did not create any illness without also creating the remedy . The content of this book gives a multi-disciplinary approach into the anti-cancer research field related to natural products and dietary compounds. Mainly, it covers the area of antitumor activity through an in-depth description of the cytotoxic, anti-inflammatory and anti-oxidant properties in cancer, inflammatory and cardio-vascular diseases. The cell death inducing mechanisms (apoptosis, anti-proliferative activity, angiogenesis, cell cycle control, cytostatic property and autophagy) give an overview of how natural products are able to target cancer cells."
This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their application to practical issues related to design and operation of biological systems. Intended as a self-contained textbook for students in biotechnology and in industrial, chemical and biomedical engineering, this book will also represent a useful reference guide for professionals working in the above-mentioned fields.
DESCRIPTION:
The 2002 Nobel Prize in Physiology or Medicine was awarded to
Sydney Brenner (United Kingdom), H. Robert Horvitz (US) and John E.
Sulston (UK) "for their discoveries concerning genetic regulation
of organ development and programmed cell death." Cell death is a
fundamental aspect of embryonic development, normal cellular
turnover and maintenance of homeostasis (maintaining a stable,
constant environment) on the one hand, and aging and disease on the
other. This volume addresses the significant advances with the
techniques that are being used to analyze cell death.
This second volume in the series covers such topics as DNA fingerprinting of fishes, the cytochromes P450 in fish, the molecular biology of bacterial fish diseases, and new insights into the origins of the diversity and distribution of fish antifreeze proteins. The book will be of great value to fisheries scientists, animal biochemists, physiologists and endocrinologists, and aquaculturists. It will provide researchers and students alike with a pertinent information source from theoretical and experimental angles.
The field of genetics is rapidly evolving and new medical breakthroughs are occurring as a result of advances in knowledge gained from genetics research. This series continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
Developed for a range of tissues where the culture environment takes into account the spatial organization of the cells therein, 3D cell culture models serve to bridge the gap between in vivo studies at one extreme with that of simple cell monolayers at the other. In 3D Cell Culture: Methods and Protocols, international experts describe a number of basic and applied methodologies taken from a breadth of scientific and engineering disciplines, many of which deal with direct applications of 3D culture models, most notably in the formation of tissues for clinical purpose. Beginning with an overview of the biological and materials scaffold requirements for successfully creating 3D models, the book delves into topics such as general scaffold design and fabrication techniques, models for bone, skin, cartilage, nerve, bladder, and hair follicles, and chapters on bioreactor design, imaging, and stem cells. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective subjects, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, 3D Cell Culture: Methods and Protocols serves as a basic manual for laboratory-based scientists who not only need to have a comprehensive range of techniques contained within a single text but also require techniques described using a standard, convenient format.
This detailed volume presents a comprehensive technical overview of DNA nanotechnology with an emphasis on 3D DNA nanostructure design and applications. Coverage spans from basic design principles for DNA and RNA nanostructures to their cutting-edge applications in a variety of fields, with the book divided into basic DNA and RNA nanostructure design strategies as well as applications utilizing DNA nanostructures, including but not limited to nanomedicine, bioimaging, biosensing, nanoplasmonics, nanoelectronics, nanofabrication, crystallography, biophysics, and analytical chemistry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, 3D DNA Nanostructure: Methods and Protocols provides the most up-to-date tutorial style overviews and technical style protocols to benefit researchers in a wide variety of areas.
One of the major goals of researchers in the field of apoptosis is
to identify targets for novel therapies in cancer, AIDS, and
Alzheimer s disease. Understanding the molecular mechanisms of the
various components of the apoptotic pathways is the first step to
reaching this goal.
This interdisciplinary thesis introduces a systems biology approach to study the cell fate decision mediated by autophagy. A mathematical model of interaction between Autophagy and Apoptosis in mammalian cells is proposed. In this dynamic model autophagy acts as a gradual response to stress (Rheostat) that delays the initiation of bistable switch of apoptosis to give the cells an opportunity to survive. The author shows that his dynamical model is consistent with existing quantitative measurements of time courses of autophagic responses to cisplatin treatment. To understand the function of this response in cancer cells, he has provided a systems biology experimental framework to study quantitative and dynamical aspects of autophagy in single cancer cells using live-cell imaging and quantitative fluorescence microscopy. This framework can provide new insights on function of autophagic response in cancer cells.
This thoroughly revised second edition complied in 2 books is an up-to-date overview of the current clinical advances in sarcoma and osteosarcoma. The new edition features detailed, in-depth discussions of microRNAs in osteosarcoma, historical perspectives of chemotherapy in the treatment of the disease, tumor targeted IL12 therapy and HER2 targeted therapy, the role of enhancer elements in regulating the prometastatic transcriptional program and more. Further, these essential volumes also includes new insights on Wnt signaling in osteosarcoma, the role of genomics, genetically modified T-cell therapy, liquid biopsy, oncolytic viruses, immunophenotyping, receptor tyrosine kinases and epigenetic-focused approaches for treatment of osteosarcoma metastases, as well as thoughts on the current standard of treatment for patients suffering from these cancers. In the years since the previous edition, there have been numerous new developments in this rapidly changing field; this new edition is both timely and urgently needed. When taken together these companion volumes, Current Clinical (Book 1) and Scientific (Book 2) Advances in Osteosarcoma, are a timely and urgently needed guide for laboratory investigators and clinical oncologists focused in sarcoma.
This book will cover both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as diagnostics and treatment regimes. A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that that less than 0.1% of the total microbial biomass lives in the planktonic mode of growth. The term was coined in 1978 by Costerton et al. who defined the term biofilm for the first time.In 1993 the American Society for Microbiology (ASM) recognised that the biofilmmode of growth was relevant to microbiology. Lately many articles have been published on the clinical implications of bacterial biofilms. Both original articles and reviews concerning the biofilm problem are available.
This book consists of 23 essays about prominent people and events in the history of respiratory physiology. It provides a first-hand chronicle of the advancements made in respiratory physiology starting with Galen and the beginnings of Western physiology. The volume covers every aspect of the evolution of this important area of knowledge: pulmonary circulation, Boyle's Law, pulmonary capillaries and alveoli, morphology, gas exchange and blood flow, mechanics, control of ventilation, and comparative physiology. The book emphasizes societal and philosophical aspects of the history of science. Although it concentrates on physiology, it also describes how cultural movements, such as The Enlightenment, shaped the researchers discussed. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.
This book deals with the paradoxical role of autophagy in tumor suppression and tumor promotion in cancer cells. Autophagy plays opposing, context-dependent roles in tumors; accordingly, strategies based on inhibiting or stimulating autophagy could offer as potential cancer therapies. The book elucidates the physiological role of autophagy in modulating cancer metastasis, which is the primary cause of cancer-associated mortality. Further, it reviews its role in the differentiation, development, and activation of multiple immune cells, and its potential applications in tumor immunotherapy. In addition, it examines the effect of epigenetic modifications of autophagy-associated genes in regulating tumor growth and therapeutic response and summarizes autophagy's role in the development of resistance to a variety of anti-cancer drugs in cancer cells. In closing, it assesses autophagy as a potential therapeutic target for cancer treatment. Given its scope, the book offers a valuable asset for all oncologists and researchers who wish to understand the potential role of autophagy in tumor biology.
Myxobacteria have fascinated generations of scientists since their discovery over a century ago. These bacteria represent the epitome of complex prokaryotic behaviour. In this book, expert myxobiologists describe important recent advances in understanding their behaviour at a molecular and cellular level.
This book provides the latest findings on neuroprotection and neuroregeneration as potential therapeutic strategies for various eye diseases, namely, glaucoma, age-related macular degeneration (AMD), retinal detachment, and retinitis pigmentosa. Glaucoma is one of the main causes of blindness throughout the world, and other diseases such as AMD and retinitis pigmentosa also lead to loss of vision. All these conditions are characterized by degeneration of specific retinal cell types, making it essential to establish treatments to protect retinal neurons and the optic nerve. With that aim in mind, this book explains the mechanisms underlying aforementioned diseases and their experimental models. The novel strategy proposals for the treatment of retinal diseases based on the concept of neuroprotection are also discussed in the main body of the text, while the section on regenerative research discusses optic nerve regeneration, endothelial progenitor cells, and iPS cells. This book is recommended as a professional reference work for all doctors and trainees in the field of ophthalmology who are interested in neuroprotective and neuroregenerative treatments.
The volume dwells on the major issues of mechanical stress influencing the ion channels and intracellular signaling pathways. This book is a unique collection of reviews outlining current knowledge and future developments in this rapidly growing field. In our opinion the book presents not only the latest achievements in the field but also brings the problem closer to the experts in related medical and biological sciences as well as practicing doctors. Knowledge of the mechanisms which underlie these processes is necessary for understanding of the normal functioning of different living organs and tissues and allows to predict changes, which arise due to alterations of their environment, and possibly will allow to develop new methods of artificial intervention. We also hope that presenting the problem will attract more attention to it both from researchers and practitioners and will assist to efficiently introduce it into the practical medicine.
DESCRIPTION: |
![]() ![]() You may like...
Deconstructing Health Inequity - A…
Timothy A. Carey, Sara J Tai, …
Hardcover
R1,890
Discovery Miles 18 900
The Land Is Ours - Black Lawyers And The…
Tembeka Ngcukaitobi
Paperback
![]()
The Path from Biomarker Discovery to…
Federico Goodsaid, William B. Mattes
Paperback
R1,202
Discovery Miles 12 020
|