![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Cellular biology
It has become clear that tumors arise from excessive cell proliferation and a c- responding reduction in cell death. Tumors result from the successive accumulation of mutations in key regulatory target genes over time. During the 1980s, a number of oncogenes were characterized, whereas from the 1990s to the present, the emphasis shifted to tumor suppressor genes (TSGs). It has become clear that oncogenes and tumor suppressor genes function in the same pathways, providing positive and ne- tive growth regulatory activities. The signaling pathways controlled by these genes involve virtually every process in cell biology, including nuclear events, cell cycle, cell death, cytoskeletal, cell membrane, angiogenesis, and cell adhesion effects. Tumor suppressor genes are mutated in hereditary cancer syndromes, as well as somatically in nonhereditary cancers. In their normal state, TSGs control cancer development and p- gression, as well as contribute to the sensitivity of cancers to a variety of therapeutics. Understanding the classes of TSGs, the biochemical pathways they function in, and how they are regulated provides an essential lesson in cancer biology. We cannot hope to advance our current knowledge and to develop new and more effective therapies without understanding the relevant pathways and how they influence the present approaches to therapy. Moreover, it is important to be able to access the powerful tools now available to discover these genes, as well as their links to cell biology and growth control.
The diverse applications in this volume range from the study of allosteric regulation of ion channel activity using a classic mutagenesis approach, to the study of channel subunit stoichiometry using a novel biophysical approach based on fluorescence resonance energy transfer. Highlights include methods for heterologous expression of ion channels in cells, for determining channel structure-function, and for studying channel regulation.
For over forty years, mesenchymal stem cells (MSCs) have been scrutinized and studied, garnering much attention due to their broad therapeutic efficacy. In Mesenchymal Stem Cells: Methods and Protocols, leaders in the field were assembled to contribute detailed methodologies for the isolation and characterization of human and rodent MSCs. Recently, these vital cells have shown therapeutic benefits in the treatment of myocardial infarction, stroke, lung diseases, spinal cord injury and other neurological disorders, thus promising a boundless future in their study. Cutting edge and easy to use, Mesenchymal Stem Cells: Methods and Protocols is the perfect resource for scientists attempting to pursue this important and ever-developing field of research.
International Review of Cytology presents current advances and
comprehensive reviews in cell biology-both plant and animal.
Articles address structure and control of gene expression,
nucleocytoplasmic interactions, control of cell development and
differentiation, and cell transformation and growth. Authored by
some of the foremost scientists in the field, each volume provides
up-to-date information and directions for future research.
A study of mast cells and basophils, designed for the use of immunologists, biochemists and medical researchers. Detailed chapters cover all aspects of mast cell and basophil research, from cell development, proteases, histamine, cysteinyl leukotrienes, physiology and pathology to the role of these cells in health and disease. Chapters also discuss the clinical implications of histamine receptor antagonists.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
This volume includes a series of protocols focused on mitotic spindle assembly and function. The methods covered in this book feature a broad range of techniques from basic microscopy to the study of spindle physiologies relevant to cancer. These methods can be applied to diverse model systems that range from the cell-free Xenopus egg extract system to the moss Physcomitrella patens, in an effort to demonstrate the key contributions made by researchers using multiple model organisms. Chapters in The Mitotic Spindle: Methods and Protocols integrate cutting-edge technologies that have only become available due to the cross-disciplinary efforts, such as ATP analogue sensitive inhibition of mitotic kinases. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and informative, The Mitotic Spindle: Methods and Protocols, is a valuable resource for researchers who are new to mitosis or are already experts in the field.
This book describes current methods for the identification and characterization of the major hallmarks of senescent cells. Chapters focus on the high heterogeneity of the senescence phenotypes, and techniques to induce and identify specific senescence programs. Additional chapters describe cellular and mouse models in which is possible to study the complex cell and non-cell autonomous functions of senescent cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Cellular Senescence: Methods and Protocols aims to ensure successful results in the further study of this vital field.
The processes of aging and death remain one of the most fascinating, and mysterious, areas of biological research. Huge anomalies between species raise questions the answers to which could have fundamental implications for the field of medical science. As scientists unlock the secrets of the exceptionally long-lived little brown bat (up to 34 years), or the common budgerigar, for example, which despite having a metabolic rate 1.5 times that of a laboratory mouse, can live for up to 20 years, it has become more important than ever to be able to make a comparative analysis of the various species used in research. Dealing with every one of the mammalian species that are employed in laboratory research, this is the first book on the subject of aging that provides detailed comparative data for age-related changes in its subjects. It does so at the level of the whole animal, its organs, organelles and molecules. The comparative data, supplied in 15 chapters by leading experts, provides information on fields as disparate as telomere function and loss, the importance of the Sirtuins and Tor, the influence of hormones on lifespans, the relationship between body size and lifespan, the effects of restricted calorific intake, age-related changes in cell replication, and DNA damage and repair. Chapters are devoted to cardiac aging, comparative skeletal muscle aging, the aging of the nervous and immune systems, the comparative biology of lyosomal function and how it is affected by age, and many other key areas of research. This much-needed text will provide scientists working in a wide spectrum of fields with key data to aid them in their studies.
This informative publication brings together knowledge of various
aspects of cellular regulation. Current Topics in Cellular
Regulation reviews the progress being made in those specialized
areas of study that have undergone substantial development. It also
publishes provocative new theories and concepts and serves as a
forum for the discussion of general principles.
This fascinating volume addresses the processes and mechanisms taking place in the cell during meiosis and recombination. It covers multicellular eukaryotes such as Drosophila, Arabidopsis, mice and humans. Once per life cycle, mitotic nuclear divisions are replaced by meiosis I and II reducing chromosome number from the diploid level to a haploid genome, reshuffling the homologous chromosomes by their centromeres, and recombining chromosome arms by crossing-over.
In step with the surge of interest in the endoplasmic reticulum, the current volume takes an integrated look at this functionally diverse organelle. Coverage includes protein translocation and export, lipid metabolism, antigen presentation, and many other subjects, gleaned from such diverse fields as cell biology, enzymology and membrane biochemistry, immunology, and signal transduction.
Ion channels are membrane proteins that act as gated pathways for
the movement of ions across cell membranes. They play essential
roles in the physiology of all cells. In recent years, an
ever-increasing number of human and animal diseases have been found
to result from defects in ion channel function. Most of these
diseases arise from mutations in the genes encoding ion channel
proteins, and they are now referred to as the
channelopathies.
Membrane proteins, representing nearly 40% of all proteins, are key components of cells involved in many cellular processes, yet only a small number of their structures have been determined. Membrane Protein Structure Determination: Methods and Protocols presents many detailed techniques for membrane protein structure determination used today by bringing together contributions from top experts in the field. Divided into five convenient sections, the book covers various strategies to purify membrane proteins, approaches to get three dimensional crystals and solve the structure by x-ray diffraction, possibilities to gain structural information for a membrane protein using electron microscopy observations, recent advances in nuclear magnetic resonance (NMR), and molecular modelling strategies that can be used either to get membrane protein structures or to move from atomic structure to a dynamic understanding of a molecular functioning mechanism. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Membrane Protein Structure Determination: Methods and Protocols serves as an ideal reference for scientists seeking to further our knowledge of these vital and versatile proteins as well as our overall understanding of the complicated world of cell biology.
The chapters contained in this two-volume set provide a broad
perspective on the novel strategies and conceptual paradigms that
drive the current resurgence of interest in somitogenesis - the
process by which somites form and elaborate differentiated tissues
and structures. Because somites are a ubiquitous feature of
vertebrate embryos, they can be studied in a variety of
experimental animal models including those amenable to genetic
(zebrafish, mammalian), molecular/genetic (mammalian, avian) as
well as those already well established for classical experimental
embryological and cell biological studies (amphibians, avian). The
wide variety of experimental approaches to somitogenesis that are
presented in these volumes will leave the reader with a broad
perspective on how current research in somitogenesis is helping to
solve fundamental questions in vertebrate development and
morphogenesis.
Prokaryotic Toxins - Antitoxins gives the first overview of an exciting and rapidly expanding research field. Toxin - antitoxin (TA) genes were discovered on plasmids 30 years ago. Since then it has become evident that TA genes are highly abundant in bacterial and archaeal chromosomes. TA genes code for an antitoxin that combine with and neutralize a cognate toxin. When activated, the toxins inhibit protein synthesis and cell growth and thereby induce dormancy and multidrug tolerance (persistence). Remarkably, in some species, the TA gene families have undergone dramatic expansions. For example, the highly persistent major human pathogen Mycobacterium tuberculosis has "100 TA loci. The large expansion of TA genes by some organisms is a biological mystery. However, recent observations indicate that TA genes contribute cumulatively to the persistence of bacteria. This medically important phenomenon may thus for the first time become experimentally tractable at the molecular level.
Lipids in Photosynthesis: Essential and Regulatory Functions, provides an essential summary of an exciting decade of research on relationships between lipids and photosynthesis. The book brings together extensively cross-referenced and peer-reviewed chapters by prominent researchers. The topics covered include the structure, molecular organization and biosynthesis of fatty acids, glycerolipids and nonglycerolipids in plants, algae, lichens, mosses, and cyanobacteria, as well as in chloroplasts and mitochondria. Several chapters deal with the manipulation of the extent of unsaturation of fatty acids and the effects of such manipulation on photosynthesis and responses to various forms of stress. The final chapters focus on lipid trafficking, signaling and advanced analytical techniques. Ten years ago, Siegenthaler and Murata edited "Lipids in Photosynthesis: Structure, Function and Genetics," which became a classic in the field. "Lipids in Photosynthesis: Essential and Regulatory Functions," belongs, with its predecessor, in every plant and microbiological researcher's bookcase.
This volume describes high-throughput approaches to a series of robust, established methodologies in molecular genetic studies of population samples. Such developments have been essential not only to linkage and association studies of single-gene and complex traits in humans, animals and plants, but also to the characterisation of clone banks, for example in mapping of genomes. Chapters have been written by developers or highly experienced end-users concerned with a diverse array of biological applications. The book should appeal to any researcher for whom costs and throughput in their genetics laboratory have become an issue.
Protein engineering is a fascinating mixture of molecular biology, protein structure analysis, computation, and biochemistry, with the goal of developing useful or valuable proteins. Protein Engineering Protocols will consider the two general, but not mutually exclusive, strategies for protein engineering. The first is known as rational design, in which the scientist uses detailed knowledge of the structure and function of the protein to make desired changes. The s- ond strategy is known as directed evolution. In this case, random mutagenesis is applied to a protein, and selection or screening is used to pick out variants that have the desired qualities. By several rounds of mutation and selection, this method mimics natural evolution. An additional technique known as DNA shuffling mixes and matches pieces of successful variants to produce better results. This process mimics recombination that occurs naturally during sexual reproduction. The first section of Protein Engineering Protocols describes rational p- tein design strategies, including computational methods, the use of non-natural amino acids to expand the biological alphabet, as well as impressive examples for the generation of proteins with novel characteristics. Although procedures for the introduction of mutations have become routine, predicting and und- standing the effects of these mutations can be very challenging and requires profound knowledge of the system as well as protein structures in general.
During the past decade, a wide range of scientific disciplines have adopted the use of adipose-derived stem/stromal cells (ASCs) as an important tool for research and discovery. In Adipose-Derived Stem Cells: Methods and Protocols, experts from the field, including members of the esteemed International Federation of Adipose Therapeutics and Science (IFATS), provide defined and established protocols in order to further codify the utilization of these powerful and accessible cells. With chapters organized around approaches spanning the discovery, pre-clinical, and clinical processes, much of the emphasis is placed on human ASC, while additional techniques involving small and large animal species are included. As a volume in the highly successful Methods in Molecular Biology(TM) series, the detailed contributions include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Adipose-Derived Stem Cells: Methods and Protocols serves as a vital reference text for experienced researchers as well as new students on the path to further exploring the incredible potential of ASCs.
This volume provides easily accessible and comprehensive collection of methods, techniques, and strategies to investigate the molecular and cellular biology of peroxisomes in different organisms. Chapters detail valuable instructions, guidelines and protocols for molecular cell biologists, biochemists and biomedical researchers with an interest in peroxisome biology. Chapters in Peroxisomes: Methods and Protocols illustrate the isolation of peroxisomes, investigation of properties of membrane proteins, protocols to investigate and manipulate peroxisomes in cellular systems, detection of peroxisomes, including immunofluorescence, cytochemistry, cryo-immuno electron microscopy, and live cell imaging approaches. Authoritative and practical, Peroxisomes: Methods and Protocols aims to be useful for those already working on peroxisomes as well as for those who would like to start working on this fascinating organelle.
Folding for the Synapse addresses the current view on how protein folding and misfolding, controlled by molecular chaperones, contribute to synapse function and dysfunction. Molecular chaperones have been studied in relation to de novo protein folding, but there is increasing awareness that chaperone function is required for the regulation of protein dynamics when functioning physiologically as an isolated moiety or part of a protein complex. This book will introduce both important concepts of folding machineries and give examples of the biological relevance of further chaperone functions.
For a virus to invade a host cell it needs to penetrate the physical barrier imposed by the plasma membrane. Viruses have evolved specialized surface proteins to meet this challenge. These proteins facilitate delivery of the viral genetic information into the host cell by either fusing the viral envelope with a host cell membrane or by forming membrane pores. Membrane fusion and pore formation critically depend on the engagement of host cell receptors and receptor choice is a key determinant of viral tropism. The multi-faceted interplay between viral and cellular factors during virus entry is a fascinating field of study, which can provide important insight into viral pathogenesis and define new targets for intervention. This book provides a comprehensive overview of this exciting field of research.
Protein kinase CK2 (formerly casein kinase II or 2) is known to play a critical role in the control of cell growth and cell death and is thus intimately involved in the development of cancer. More specifically, CK2 has been found to be elevated in all cancers examined. While CK2 levels are known to be high in proliferating normal cells, CK2 has also been found to be a potent suppressor of apoptosis and is a link to the cancer cell phenotype, which is characterized by deregulation of both cell proliferation and cell death. Indeed, it would appear that CK2 impacts many of the hallmarks of cancer and it has now gained considerable attention as a potential target for cancer therapy. Protein Kinase CK2 and Cellular Function in Normal and Disease States increases knowledge of the role of CK2 in the development of cellular dysfunction and emphasizes that this protein may serve as a target of drug development for improved cancer therapy. In addition, it is a handy tool that provides cancer researchers, graduate students, and all scientists involved in CK2 research with one main source for the latest advances in CK2 research.
Although embryonic stem cells currently enjoy the public limelight and show great pr- ise for cell based medical therapies, it is the adult stem cells which are responsible for the body's natural ability to fght disease, heal and recover, or fail and succumb to various maladies. The study of mammalian adult stem cells has surged recently, most likely from a maturation of stem cell studies in the classical developmental model organisms and in hematopoeisis. All the tissues of the body examined so far are generated and regenerated from stem cells, it has been an important frst step to adapt or devise new methods to identify and obtain these cells in quantity and purity for further study. Culture techniques have been optimized for managing the growth and differentiation of stem cells in vitro; as some stem cells are pluripotent, often the method is to guide the fate of such cells among the possible differentiation fates. Much of this work, and that in the classical model org- isms, has helped defne the aspects of the stem cell environment or niche that are crucial for both growth and differentiation, and these studies have moved in vivo at increasingly higher resolution. Importantly, the in vivo niche is a current target for bioengineering the matrix and signaling factors. Herein, we present methods for studying six types of mammalian stem cells, m- mary, neural, mesenchymal, endothelial, dendritic, and muscle. |
![]() ![]() You may like...
Intermodulation Distortion in Microwave…
Jose Carlos Pedro, Nuno Borges Carvalho
Hardcover
R4,564
Discovery Miles 45 640
|