![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Cellular biology
"Notch Signaling: Methods and Protocols" focuses on molecular, biochemical and bioinformatics aspects of Notch signaling. Chapters analyze the Notch interactome, post-translational modifications of Notch, ligand binding assays, methods to assess proteolytic cleavage and transcriptional targets. Written in the highly successful "Methods in Molecular Biology "series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, " Notch Signaling: Methods and Protocols" is a valuable contribution to hundreds of labs and thousands of scientists who pursue this research area with vigor.
Animal cell technology is a growing discipline of cell biology, which aims not only to understand structures, functions, and behaviours of differentiated animal cells but also to ascertain their ability to be used for industrial and medical purposes. The goal of animal cell technology includes accomplishments of clonal expansion of differentiated cells with useful ability, optimisation of their culture conditions, modulation of their ability for production of medically and pharmaceutically important proteins, and the application of animal cells to gene therapy, artificial organs, and functional foods. This volume gives the reader a complete review of the present state of the art in Japan and other countries where this field is well advanced. The Proceedings will be useful for cell biologists, biochemists, molecular biologists, immunologists, biochemical engineers, and other disciplines related to animal cell culture, working in either academic environments or in industries of biotechnology and pharmacy.
This second edition volume expands on the first edition with new developments on Toll-Like Receptors (TLRs) controlling events such as cross-priming of associated pattern recognition receptors, post-transcriptional regulation, interaction with other cellular and biologic systems, and cancer progression. This book is divided into five sections: Part I outlines methods for TLR detection, interaction, and intracellular trafficking; Part II describes methods and assays to investigate how TLRs cross-prime other pattern recognition receptors, including intracellular DNA receptors and inflammasome formation; Part III highlights RNA regulation, detailing how TLRs can induce RNA transcripts and molecules such as lncRNAs and microRNAs; Part IV explores TLR detection and activation in systems such as epithelial barrier function, metabolism and the circadian clock, as well as cellular systems including T and B lymphocytes; and Part V describes models to delineate the role of TLRs in diseases such as dermatitis, arthritis, and gastric cancer. Written in the highly successful Methods in Molecular Biology series format, each chapter contains a summary, a list of required materials, step-by-step, readily reproducible laboratory protocols, useful notes to investigate TLRs in cell culture, systems and disease, and tips on troubleshooting and avoiding known pitfalls. Practical and cutting-edge, Toll-Like Receptors: Methods and Protocols, Second Edition is a valuable resource to any immunologist, molecular or medical biologist working in a laboratory setting. It will add skill to both students and the more advanced molecular biologist who wishes to learn a new technique or move to a different area within their current repertoire of practical knowledge.
Of all scientific instruments, probably none has had more applications in the life sciences than the light microscope. In Light Microscopy: Methods and Protocols, expert researchers explore the basics and the latest advances in microscope instrumentation, sample preparation, and imaging techniques, all of which have been producing fundamental insights into the functions of cells and tissues. Chapters cover a variety of bright field and fluorescence microscopy-based approaches that are central to the study of a range of biological questions, providing information on how to prepare cells and tissues for microscopic investigations, covering detailed staining procedures, and exploring methods to analyze images and interpret the results accurately. Composed in the highly successful Methods in Molecular Biology(TM) series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary materials, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Comprehensive and current, Light Microscopy: Methods and Protocols is an essential handbook for all researchers who are exploring the intriguing microscopic world of the cell.
The first libraries of complementary DNA (cDNA) clones were con structed in the mid-to-late 1970s using RNA-dependent DNA polymerase (reverse transcriptase) to convert poly A* mRNA into double-stranded cDNA suitable for insertion into prokaryotic vectors. Since then cDNA technology has become a fundamental tool for the molecular biologist and at the same time some very significant advances have occurred in the methods for con structing and screening cDNA libraries. It is not the aim of cDNA Library Protocols to give a comprehensive review of all cDNA library-based methodologies; instead we present a series of up-to-date protocols that together should give a good grounding of proce dures associated with the construction and use of cDNA libraries. In deciding what to include, we endeavored to combine up-to-date versions of some of the most widely used protocols with some very usefiil newer techniques. cDNA Library Protocols should therefore be especially useful to the investigator who is new to the use of cDNA libraries, but should also be of value to the more experienced worker. Chapters 1-5 concentrate on cDNA library construction and manipula tion, Chapters 6 and 7 describe means of cloning difficult-to-obtain ends of cDNAs, Chapters 8-18 give various approaches to the screening of cDNA libraries, and the remaining chapters present methods of analysis of cDNA clones including details of how to analyze cDNA sequence data and how to make use of the wealth of cDNA data emerging from the human genome project."
Over the past 10 years great progress has been made in the development of efficient techniques for both gene isolation and mapping. The identifica- tion and isolation of transcribed sequences from large chromosomal regions are central to the human genome mapping project. Techniques for isolating novel cDNAs have applications both in the overall construction and integra- tion of long-range physical and transcription maps and in the identification of disease genes. A number of different techniques for the isolation of cDNAs from mam- malian genomes have been developed, including screening "zoo" blots, the use of large genomic clones (YACs or cosmids) for hybridization against cDNA libraries, and CpG island mapping. More recently two highly efficient tech- niques have been introduced: exon trapping, based on the presence of exon splice sites, and direct selection, based on the enrichment of selected cDNAs using immobilized YACs or cosmids. Leading researchers in the field have contributed chapters detailing the practical procedures for these and other widely used methods. The most rapid progress presently being made in the field of gene isolation concerns the partial sequencing of cDNA clones from one or both ends to produce expressed sequence tags (ESTs). Indeed, by Octo- ber 1995, the EST division of Genbank (dbEST) contained a total of approxi- mately 270,000 human EST sequences accounting for almost half the number of sequence entries in Genbank.
Human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, are a key focus of current biomedical research. The emergence of state of the art culturing techniques is promoting the realization of the full potential of pluripotent stem cells in basic and translational research and in cell-based therapies. This comprehensive and authoritative atlas summarizes more than a decade of experience accumulated by a leading research team in this field. Hands-on step-by-step guidance for the derivation and culturing of human pluripotent stem cells in defined conditions (animal product-free, serum-free, feeder-free) and in non-adhesion suspension culture are provided, as well as methods for examining pluripotency (embryoid body and teratoma formation) and karyotype stability. The Atlas of Human Pluripotent Stem Cells - Derivation and Culturing will serve as a reference and guide to established researchers and those wishing to enter the promising field of pluripotent stem cell research.
In the past few years there has been the increased recognition that the effects of oxidative stress are not limited to the damage of cellular constituents. There is now evidence that reactive oxygen species (ROS) can alter cell function by acting upon the intermediates, or second messengers, in signal transductions. Such effects on signaling mechanisms probably account for the role of oxidative stress in inflammation, aging, and cancer. This volume brings together internationally recognized researchers in both the major areas covered by the book, oxidative stress and signal transduction. The work is organized in three sections. The first deals with the immediate cellular responses to oxidative stress and the production of second messengers. The second details the connection between second messengers and the gene. The third part looks more closely at the level of the gene.
This book features a special subsection of Nanomedicine, an application of nanotech nology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact sig nificantly upon existing conservative practices. This volume is a collection of authoritative reviews. In the introductory section we define the field (intracellular delivery). Then, the fundamental routes of nanode livery devices, cellular uptake, types of delivery devices, particularly in terms of localized cellular delivery, both for small drug molecules, macromolecular drugs and genes; at the academic and applied levels, are covered. The following section is dedicated to enhancing delivery via special targeting motifs followed by the introduction of different types of intracellular nanodelivery devices (e.g. a brief description of their chemistry) and ways of producing these different devices. Finally, we put special emphasis on particular disease states and on other biomedical applications, whilst diagnostic and sensing issues are also included. Intracellular delivery / therapy is a highly topical which will stir great inter est. Intracellular delivery enables much more efficient drug delivery since the impact (on different organelles and sites) is intracellular as the drug is not supplied externally within the blood stream. There is great potential for targeted delivery with improved localized delivery and efficacy.
In aerobic tissues such as heart, brain, kidney, liver and brown fat, mitochon- dria account for more than 20% of cell protein and play an essential role in res- piration, ATP formation, ketogenesis, gluconeogenesis, amino acid metabolism, ureagenesis, thermogenesis and a variety of other metabolic activities. The mecha- nisms by which these activities are integrated and regulated within the overall context of cellular physiology is of much current research interest. In order to bring together scientists examining the various diverse aspects of this overall pro- blem, an International Conference on INTEGRATION OF MITOCHONDRIAL FUNC- TION was held June 4-7, 1987 at the Hanes Art Center on the campus of the Uni- versity of North Carolina at Chapel Hill. The chapters of this volume derive from presentations made at this conference. The focus of INTEGRATION OF MITOCHONDRIAL FUNCTION is on signifi- cant new experimental and theoretical advances concerning integration of mito- chondrial function at the organelle, cell, tissue and whole organism levels of organization.
The goal of Biological Aging: Methods and Protocols is to present some of the most promising and important tools that are currently used in biological aging research. These tools include established protocols such as aging cell culture as well as many more contemporary approaches such as nuclear transfer, microarray and proteomics technologies and the use of ribozymes in aging research. Collectively, these powerful tools combined with the many other techniques that are presented are rapidly advancing the exciting and expanding field of biological aging.
Epithelia are one of the commonest tissue types in the animal kingdom. Chapters from leading scientists in the major international research laboratories use examples from different systems to illustrate the form and function of epithelia. An important theme is the way in which epithelial cells differentiate to specialized tissue - reversal of this process occurs when cells become tumorigenic.
Lysosomes are membrane-surrounded organelles which are present in all animal cells. The importance of this organelle is underlined by an increasing number of human diseases, which are associated with an impaired function of the lysosomal compartment. This book summarizes the current state-of-the art knowledge about this unique organelle. It addresses the biogenesis of this compartment, the transport of lysosomal proteins, the role of the lysosomal membrane in lysosomal stability and transport, the function of lysosomal proteases and hydrolases, lysosomal storage disorders, and new concepts on how to treat these diseases. In addition to these classical topics, new insights into lysosomal functions are covered by chapters dealing with specialized lysosomes involved in bone resorption and plasma membrane repair, the lysosomal transciptome, and proteome and the emerging role of lysosomes in special forms of autophagy. This book will provide readers with a comprehensive overview into how this fascinating organelle works and how research in the field is developing.
Systematic investigations of the structure, mechanics, and dynamics of biological surfaces help us understand more about biological processes taking place at cell and bacteria surfaces. Presented here is a study of the role membrane-bound saccharides play in the modulation of interactions between cells/bacteria and their environments. In this thesis, membrane structures were probed perpendicular and parallel to the surface, and sophisticated planar models of biomembranes composed of glycolipids of various structural complexities were designed. Furthermore, specular and off-specular X-ray and neutron scattering experiments were carried out. This research has led to the development of several new methods for extracting information on the structure and mechanics of saccharide-rendered biomembranes from the measured scattering signals. In fact, more is now known about the influence of the saccharide structure. These results demonstrate that the study of planar model systems with X-ray and neutron scattering techniques can provide comprehensive insight into the structure and mechanics of complex biological surfaces.
Sodium channels confer excitability on neurons in nociceptive pathways and exhibit neuronal tissue specific and injury regulated expression. This volume provides recent insights into the control of expression, functioning and membrane trafficking of nervous system sodium channels and reviews why sodium channel sub-types are potentially important drug targets in the treatment of pain. The roles of sodium channels in dental and visceral pain are also addressed. The emerging role of sodium channel Nav1.3 in neuropathic states is another important theme. Authors from the pharmaceutical industry discuss pharmacological approaches to the drug targeting of sodium channels, and in particular Nav1.8, exclusively expressed in nociceptive neurons. The final chapter highlights the functional diversity of sodium channels in part provided by post-transcriptional processing and the insights into sodium channel function that are being provided by tissue specific and inducible gene knock-out technology.
This detailed volume encompasses new technological developments that specifically address questions related to adenosine 3',5'-monophosphate (cAMP) compartmentalization, that probe relevant protein-protein interactions, that increase the spatial and temporal resolution of cAMP signal detection, and that can facilitate integration of the mounting complexity of the information that is becoming available on this signaling system. cAMP, the prototypical intracellular second messenger, regulates a large variety of cellular functions and biological processes, including gene transcription, cell metabolism, proliferation, development, as well as more specialized functions depending on the cell type, so the realization of its extremely complex spatial organization and local regulation is providing novel mechanistic insight into cell physiology and is producing a novel framework for the identification of disease mechanisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introduction to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and authoritative, cAMP Signaling: Methods and Protocols serves as a vital resource for researchers working in this expanding, complex field.
The plant' is often the most neglected part of plant-based medicine. Throughout time, humans have searched, collected, and effectively used plants for healing. Currently, the medicinal plant-based business is flourishing at a dramatic pace and at the expense of an already declining population of plant species, many of which are on the verge of extinction. In spite of this history and popularity, the mystery of what transforms a plant into a medicinal plant persists, and there are chronic problems with ensuring the safety and efficacy of medicinal plant products. Therefore, there is a real need for a full characterization of medicinal plant species and for the development and application of novel technologies for the production of plant-based medicines. This book highlights some of the recent advances and new approaches to the development of technologies for plant-based medicines and is intended to stimulate new discussions among researchers, regulatory authorities, and pharmaceutical organizations, leading to significant advancements in the field.
Products from Cells - Cells as Products This book ist he "lasting" product, a resource ofup to date information in the scientific literature fort he field ofanimal cell tec hnology, as it was presented during a pleasant and s timulating mee ting that was held in Lugano Switzerland in April 1999. "Products" appeartwice int he title oft he conference. This clearly indicates the fact that the focus oft he papers presented during this meeting was really the application ofn ew technologies (novel reactors or novel vectors, for example for the preparation and/ort he more efficient generation ofproducts ) that could be used, mainly, int he medical field. Classical approaches forthe use ofa nimal cells, for example forthe p r oduction of virus vaccines for human and animal health, still remain an important technology and still have, surprisingly, quite significant potential for further development and improvement. How ever, it appears that major technological advances an d major growth from an economical point ofview are occurring in other areas. Most importantly, protein production on the basis of recombinant DNA molecules transferred into a nimal cells, appears to be an ever increasing field of interest and innovation, even though the first production scheme with this technology was approved more than 15 years ago.
Recent work has revealed that stabilizing G-quadruplexes in telomeric DNA inhibits telomerase activity, providing impetus for the development of G-quartet-interacting drugs, while G-quartet-containing oligonucleotides have been recognized as a potent class of aptamers effective against STAT3 and other transcription factors implicated in oncogenesis, proving these guanine-quartets to be a vital and rich area for future study. In "G-Quadruplex DNA: Methods and Protocols", experts in the field present a collection of detailed techniques for studying G-quartet formation, dynamics, and molecular recognition. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, "G-Quadruplex DNA: Methods and Protocols "promises to be a useful resource for those familiar with G-quartets as well as an easy entry point for those researchers from diverse fields who are just developing an interest in the exciting implications of G-quadruplex DNA.
The decline of infections, starvation, heart attack, and stroke has allowed people to reach extreme old age--and ushered in disability, dementia, and degenerative disease, with profound consequences for the self and society. In chapters echoing Dante's nine circles of hell, Dr. Guy Brown explores these vital issues at various levels, from the cell, to the whole body, to society and how all this new medical technology affects the meaning of death. He tracks the seismic shifts in the causes and character of death that are rocking medicine and reveals how technological innovations, such as cloning and electronic interfaces, hint at new modes of "survival" after death.
This essential volume explores mesenchymal stem cells (MSCs) and their potential to suppress immune-mediated inflammation. The chapters examine applications in autoimmune diseases such as lupus, rheumatoid arthritis and multiple sclerosis; blood cancers such as leukemia and lymphoma; and reproductive complications, specifically pre-term labor and use of MSCs in vitro and in animal models to discover methods of suppressing the causal inflammatory response. It also further defines the methodologies required to develop research on MSCs in vitro into established preclinical animal models including those which are proven replicas of autoimmunity and pre-term labor, to name but two. Mesenchymal Stem Cells and Immunomodulation, part of Springer's Stem Cell Biology and Regenerative Medicine, is an invaluable resource for researchers and clinicians working with stem cells, autoimmune disease, oncology, and reproductive medicine.
Signalling and Communication: An Introduction to Section 1; R. Paton. Some Aspects of Gap Junction Dynamics in Embryonic Systems; S. Baigent, et al. Real Time Processing of Nerve Signals for Controlling a Limb Prostheses; M. Bodgan, W. Rosentiel. Stimulus-Secretion Coupling in Pancreatic beta-Cells Explained by Chay's Store-Operated Model; T.R. Chay. Towards Computational Models of Chemotaxis in Escherichia Coli; L. Clarke, R.C. Paton. Three Modes of Calcium-Induced Calcium Release (CICR) in Neurons; D.D. Friel. Theta-Neuron, a One Dimensional Spiking Model that Reproduces in Vitro and in Vivo Spiking Characteristics of Cortical Neurons; B.S. Gutkin, G.B. Ermentrout. Computation and Information: An Introduction to Section 2; R. Paton. Morphomechanical Feedback in Embryonic Development; L.V. Beloussov. Information Processing in Computational Tissues;M.H. Butler, et al. Semiotics of Complex Systems: A Hierarchical Notation for the Mathematical Structure of a Single Cell; J.L.R. Chandler. Localization and Nonlocality in Computation; R. Cottam, et al. Mining the Gene Expression Matrix: Inferring Gene Relationships from Large Scale Gene Expression Data; P. D'haeseleer, et al. Epilogue-Concluding Discussions; M. Holcombe. 18 Additional Chapters. Index.
This book outlines the interaction of cadmium with the proteome and signalling molecules of mammalian cells. Chapters from expert contributors cover topics such as cadmium chemical biology, membrane receptors and transporters for cadmium and cadmium complexes, and targets of cadmium toxicity. Students and researchers working in bioinorganic chemistry will find this book an important account.
This book is a broadly historical account of a remarkable and very exciting scientific story-the search for the number of human chromosomes. It covers the processes and people, culminating in the realization that discovering the number of human chromosomes brought as much benefit as unraveling the genetic code itself. With the exception of red blood cells, which have no nucleus and therefore no DNA, and sex cells, humans have 46 chromosomes in every single cell. Not only do chromosomes carry all of the genes that code our inheritance, they also carry them in a specific order. It is essential that the number and structure of chromosomes remains intact, in order to pass on the correct amount of DNA to succeeding generations and for the cells to survive. Knowing the number of human chromosomes has provided a vital diagnostic tool in the prenatal diagnosis of genetic disorders, and the search for this number and developing an understanding of what it means are the focus of this book.
This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology. |
![]() ![]() You may like...
Time Series Analysis and Forecasting…
Ignacio Rojas, Hector Pomares, …
Hardcover
R4,396
Discovery Miles 43 960
|