![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Cellular biology
This volume focuses on the use of system genetic methods and the use of murine models to study the role of gene variants and environmental factors on human health and disease-what is now often called personalized or precision health care. The protocols in this book will help readers analyze genetic causes of heritable variation across a wide range of systems and traits using rodent models. The chapters in this book are separated into three sections that cover: 1) resources for systems genetics; 2) tools for analysis and integration in systems genetics; and 3) systems genetics use cases. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and tools, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and thorough, Systems Genetics: Methods and Protocols is a valuable resource for anyone who is interested in this diverse field.
Endosomes are a heterogeneous population of endocytic vesicles and tubules that have captivated the interest of biologists for many years, partly due to their important cellular functions and partly due to their intriguing nature and dynamics. Endosomes represent a fascinating interconnected network of thousands of vesicles that transport various cargoes, mainly proteins and lipids, to distant cellular destinations. How endosomes function, what co-ordinates the molecular determinants at each step of their dynamic life cycle and what their biological and medical relevance is, are among the questions addressed in this book.
The human body contains many specialized tissues that are capable of fulfilling an incredible variety of functions necessary for our survival. This volume in the Human Cell Culture Series focuses on mesenchymal tissues and cells. The in vitro study of mesenchymal cells is perhaps the oldest form of human cell culture, beginning with the culturing of fibroblasts. Fibroblasts have long been generically described in the literature, arising from many tissue types upon in vitro cell culture. However, recent studies, many enabled by new molecular biology techniques, have shown considerable diversity in fibroblast type and function, as described within this volume. Mesenchymal tissue types that are described within include bone, cartilage, tendons and ligaments, muscle, adipose tissue, and skin (dermis). The proper function of these tissues is predominantly dependent upon the proper proliferation, differentiation, and function of the mesenchymal cells which make up the tissue. Recent advancements in primary human mesenchymal cell culture have led to remarkable progress in the study of these tissues. Landmark experiments have now demonstrated a stem cell basis for many of these tissues, and, furthermore, significant plasticity and inter-conversion of stem cells between these tissues, resulting in a great deal of contemporary excitement and controversy. Newly-developed mesenchymal cell culture techniques have even lead to novel clinical practices for the treatment of disease.
Metastatic dissemination of cancer is a main cause of cancer related deaths, therefore biological mechanisms implicated in metastatic process presents an essential object of cancer research. This research requires creation and utilization of adequate laboratory models. The book describes main approaches to model processes of metastatic cancer dissemination and metastases development. The book is structured in according with various metastatic pathways reflecting molecular specificity of metastatic process as well as anatomical specificity of aria of dissemination. Each chapter is introduced by short discussion of clinical aspects of certain metastatic pathway. Especial attention is paid for methods of visualization, quantification and analysis of the modeled metastases. Additional chapter is devoted to methods of mathematic modeling of tumor spread. The data presented in the book may be helpful for cancer researchers and oncologists.
Principles of Genomics and Proteomics is the perfect reference for graduate students and researchers in these areas to understand its principles and execute precise and reproducible experiments. Following an introductory chapter, the book dives into proper research, including genome mapping. Experiments covered in the book span from Sangers Sequencing, Shotgun sequencing, SAGE analysis, DNA footprinting, Gel retardation, ChIP, and protein resolution methods, including PAGE, 2D gel electrophoresis and isoelectric focusing. Biophysical techniques are also described in detail, including ultraviolet and visible light spectroscopy, fluorescence spectroscopy, NMR and X-ray diffraction. A final proteome analysis is dedicated to functional analysis. Other chapters cover applications of omics technologies broadly. This book is the perfect reference for genetics labs around the world. Graduate students will benefit from the structured and detailed coverage of methods and established researchers will benefit from the book for staff training in research and may find it particularly helpful in enhancing reproducibility of experiments.
The Chlamydomonas Sourcebook, Third Edition, Volume Three: Cell Motility and Behavior has been fully revised and updated to include the wealth of new resources for the Chlamydomonas community. The book presents the latest advances in the area from an international array of expert authors, reflecting significant advancements in our understanding of the role of basal bodies and flagella in human diseases. In addition, employing quantitative proteomics/mass spectroscopy as well as cryo EM tomography and single particle cryo EM has revolutionized our knowledge of the axoneme in terms of the location of proteins and their interactions. Current insights on mitosis and cytokinesis, flagellar assembly and motility, intraflagellar transport, and more will ensure use of this reference as a guide for understanding human diseases of the cilium.
Updating and building upon previous editions, "Hematopoietic Stem Cell Protocols, Third Edition" provides up-to-date protocols from leading stem cell researchers. This in-depth volume presents a clear view of the landscape of assays available to the stem cell researcher working in the growing hematopoietic stem cell (HSC) field. A robust and active field, it is supported by an abundance of innovative mouse models and molecular tools for analysis of phenotypes and functions in mouse and human cells. Understanding more about hematopoietic stem cell biology is integral if these versatile cells are to be applied effectively to treat and cure a wide range of blood diseases.An introductory chapter puts the major contributions of the book into the proper perspective. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Essential for the laboratory-based researcher, "Hematopoietic Stem Cell Protocols, Third Edition" is a much needed technical resource in the critically important field of hematopoietic stem cell investigation."
Lipobiology is an interdisciplinary field which incorporates critical aspects of lipid and lipoprotein chemistry into the disciplines of cell biology and physiology. During the last decade, advances in our understanding of the structure and function of lipids, biological membranes and lipid-derived second messengers have underscored the importance of lipids in the regulation of cellular function. This series focuses on salient aspects of the role of lipids in metabolic regulation and cellular activation, with emphasis on emerging concepts and technologies. One goal of this series is to formulate cohesive criteria upon which a foundation for the evaluation of recent work can be based and future directions of research identified.
Homeostasis. The health of an organism is influenced by external
and internal changes that may lead to the loss of homeostasis.
Under healthy conditions organisms compensate these changes. If
compensation fails disease ensues. Attention will be paid to
lifestyle, environmental changes, genetic makeup and health system.
It willbe answered how lifestyle, environment, genetic makeup and
social conditions help to maintain or upset the biological balance
and lead to cancer.
Cells in the developing embryo depend on signals from the extracellular environment to help guide their differentiation. An important mediator in this process is the extracellular matrix -- secreted macromolecules that interact to form large protein networks outside the cell. During development, the extracellular matrix serves to separate adjacent cell groups, participates in establishing morphogenic gradients, and, through its ability to interact directly will cell-surface receptors, provides developmental clocks and positional information. This volume discusses how the extracellular matrix influences fundamental developmental processes and how model systems can be used to elucidate ECM function. The topics addressed range from how ECM influences early development as well as repair processes in the adult that recapitulate developmental pathways. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
The book contains chapters written by leaders in the research on the structure and function of respiratory complex I. It will provide a concise and authoritative summary of the current knowledge on complex I of respiratory chains. This enzyme is central to energy metabolism and is implicated in many human neurodegenerative diseases, as well as in aging. Until recently it was poorly understood on a structural level, and this book will provide a timely reference resource. Such a book was not published previously. The last time a minireview series on complex I were published was in 2001, and since then complex I field changed quite dramatically.
Proteases form one of the largest and most diverse families of enzymes known. Once considered primarily as "enzymes of digestion," it is now clear that proteases are involved in every aspect of cellular function. Members of the diverse families of proteases act to promote cellular proteolysis found in nature, and their deregulation may result in different pathophysiological conditions, such as tumor progression, vascular remodeling, atherosclerotic plaque progression, ulcer, rheumatoid arthritis, and Alzheimer's disease. Many micro-organisms require proteases for replication or use proteases as virulence factors, which have facilitated the development of protease-targeted therapies for a variety of parasitic diseases. Proteases in Health and Disease represents a comprehensive overview of the fascinating field of proteases by various renowned experts, and focuses on the recently elucidated functions of complex proteolytic systems in physiology and pathophysiology. Part A, Molecular and Biochemical Aspects of Proteases, illustrates some of the major proteases, such as calpains, matrix metalloproteases, fibrinolytic serine proteases, and aspartic proteases, which play a significant role in a variety of pathologies and may be a target for therapy either by their up regulation or down regulation. Part B, Involvement of Proteases in Diseases Processes, deals with the functional roles of the individual proteases in the progression of diseases such as cardiovascular and inflammatory lung disease, malaria, cholera, autism spectrum disorder, hepatitis, and ischemia-reperfusion injury induced cardiac diseases. With this multi-disciplinary scope, the book bridges the gap between fundamental research and biomedical and pharmaceutical applications, making this a thought-provoking reading for basic and applied scientists engaged in biomedical research.
"Biomimetics and Stem Cells: Methods and Protocols" collects a series of approaches to demonstrate the role and value of biomimetics for the better understanding of stem cell behavior and the acceleration of their application in regenerative medicine. Recent advances in tissue engineering are enabling scientists to instruct stem cells toward differentiating into the right phenotypes, in the right place and at the right time. Given these advances, biomimetic environments are being designed to recapitulate, in vitro, the combinations of factors known to guide tissue development and regeneration in vivo and thereby help unlock the full potential of the stem cells. Written in the highly successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Practical and essential, "Biomimetics and Stem Cells: Methods and Protocols" focuses on the use of biomimetic systems for stem cells in order to aid in moving this vital field of study forward."
Harnessing the sun s energy via photosynthesis is at the core of sustainable production of food, fuel, and materials by plants, algae, and cyanobacteria. Photosynthesis depends on photoprotection against intense sunlight, starting with the safe removal of excess excitation energy from the light-harvesting system, which can be quickly and non-destructively assessed via non-photochemical quenching of chlorophyll fluorescence (NPQ). By placing NPQ into the context of whole-organism function, this book aims to contribute towards identification of plant and algal lines with superior stress resistance and productivity. By addressing agreements and open questions concerning photoprotection s molecular mechanisms, this book contributes towards development of artificial photosynthetic systems. A comprehensive picture from single molecules to organisms in ecosystems, and from leading expert s views to practical information for non-specialists on NPQ measurement and terminology is presented."
This handbook focuses on the entire development process of biomedical microsystems that promote special interactions with cells. Fundamentals of cell biology and mechanobiology are described as necessary preparatory input for design tasks. Advanced design, simulation, and micro/nanomanufacturing resources, whose combined use enables the development of biomedical microsystems capable of interacting at a cellular level, are covered in depth. A detailed series of chapters is then devoted to applications based on microsystems that offer enhanced cellular control, including microfluidic devices for diagnosis and therapy, cell-based sensors and actuators (smart biodevices), microstructured prostheses for improvement of biocompatibility, microstructured and microtextured cell culture matrices for promotion of cell growth and differentiation, electrophoretic microsystems for study of cell mechanics, microstructured and microtextured biodevices for study of cell adhesion and dynamics, and biomimetic microsystems (including organs-on-chips), among others. Challenges relating to the development of reliable in vitro biomimetic microsystems, the design and manufacture of complex geometries, and biofabrication are also discussed.
This book provides a comprehensive, up-to-date review of the distribution, pharmacology and physiology of central 5-hydroxytryptamine (5-HT)4 receptors. The 5-HT receptor subtypes exhibit a unique pharmacology, distribution and function, of which the 5-HT4 receptor has been one of the most intensively studied in recent years, both from a basic research standpoint and as a target for novel therapeutics.
"Nuclear envelope (NE) defects have been linked to cancer biology since the mid-1800s, but it was not until the last few years that we have begun to understand these historical links and to realize that there are myriad ways that the NE impacts on tumorigenesis. The NE is a complex double membrane system that encloses the genome while providing structural support through the intermediate filament lamin polymer and regulating protein/ mRNA trafficking and signaling between the nucleus and cytoplasm via the nuclear pore complexes (NPCs). These functions already provide some mechanisms for NE influences on cancer biology but work in the past few years has elucidated many others. Lamins and many recently identified NE transmembrane proteins (NETs) have been now shown to function in DNA repair, regulation of cell cycle and signaling, apoptosis, cell migration in metastasis and nuclear architecture and morphology. This volume presents a comprehensive overview of the wide range of functions recently identified for NE proteins and their relevance in cancer biology, providing molecular mechanisms and evidence of their value as prognostic and diagnostic markers and suggesting new avenues for the treatment of cancer. Indeed some of these recent links are already yielding promising therapies, such as the current clinical trial of selective inhibitors of the nuclear export factor exportin in certain types of leukemia, melanoma and kidney cancer."
This book focuses on the three most important aspects of ageing research: nutrition, physical exercise and epigenetics. The contributors discuss ways that age-related epigenetic imprints such as DNA methylation and histone acetylation are modified by these two interventions. The emphasis on epigenetics helps to illuminate the underlying mechanisms of anti-ageing interventions, as ageing and disease are predominately epigenetic phenomena. Among the highlights are chapter-length discussion of such topics as: how anti-inflammatory action of calorie restriction underlies the retardation of ageing and age-related diseases (Chapter 3); epigenetic modification of gene expression by exercise (Chapter 5); the role of functional foods and their bioactive components in bone health (Chapter 8); and an account of the first decade of a study of calorie restriction in nonhuman primates, conducted by the National Institute on Ageing.
"Animal Cell Biotechnology: Methods and Protocols, Third Edition" constitutes a comprehensive manual of state-of-the-art and new techniques for setting up mammalian cell lines for production of biopharmaceuticals, and for optimizing critical parameters for cell culture from lab to final production. The volume is divided into five parts that reflect the processes required for different stages of production. In Part I, basic techniques for establishment of production cell lines are addressed, especially high-throughput synchronization, insect cell lines, transient gene and protein expression, DNA Profiling and Characterisation. Part II addresses tools for process and medium optimization as well as microcarrier technology while Part III covers monitoring of cell growth, viability and apoptosis, metabolic flux estimation, quenching methods as well as NMR-based techniques. Part IV details cultivation techniques, and Part V describes special applications, including vaccine production, baculovirus protein expression, chromatographic techniques for downstream as well as membrane techniques for virus separation. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. "Animal Cell Biotechnology: Methods and Protocols, Third Edition" provides a compendium of techniques for scientists in industrial and research laboratories that use mammalian cells for biotechnology purposes.
Tissue Repair, Contraction and the Myofibroblast summarizes the latest findings concerning the biology of the myofibroblast, a cell involved in the evolution and contraction of granulation tissue and of fibrotic changes. Coverage shows that the myofibroblast is responsible for the development of hypertrophic scars, pulmonary and renal fibrosis and bronchial asthma. Reviews the cell biology and pathology of the myofibroblast as well as mechanisms of fibrosis evolution in many organs and tissues.
The number of investigators focusing their attention on lactoferrin has increased dramatically in recent years. Lactoferrin is a protein with more than one known structure and a number of proposed biological functions, including several with important regulatory consequences. In many ways it has been an easy pro tein to investigate; however, there have been difficulties under standing specific structure / function relationships, particularly as it functions in vivo. Research funding dedicated to this protein has previously been limited, but is now increasing. As lactoferrin begins to emerge formally as a protein of significance to the medi and industry, it is more important than ever to coor cal profession dinate and integrate research efforts whenever possible and to share the results of these efforts within the expanding array of medical and scientific diSciplines involved. It was our intention to provide a forum to summarize and disseminate the most recent advances in this field. Included in Lactoferrin: Interactions and Biological Functions are selected presentations representing the many disciplines involved in defining lactoferrin function in terms of its known structural features, including its carbohydrate side-chains, receptor binding sites, its capacity to bind different metal ions, and other newly discovered bioactive domains. Several of the possible physiologi cal functions of lactoferrin are described and summarized in detail, including the role of laetoferrin in bacterial killing, its in volvement in cell growth and proliferation, in the modulation of immune function, and in iron absorption."
After a decade of dominance by recombinant DNA technology, the
field of molecular and cell biology is witnessing a renewed
interest in techniques and approaches that are not driven by DNA
acrobatics. In hindsight, this is an inevitable outcome.
Deoxyribonucleic acid is not the master; it is only a storage
house. If one wishes to know how cells work, the secret is not to
be found in DNA, but rather in everything outside DNA. Science
based on DNA is useful but does not itself solve the problem. It is
most fortunate that at the height of the DNA phenomenon, there
remain scientists who continue to probe cells by non-DNA means.
Suddenly, people with such expertise are in high demand.
This book on cardiac extracellular matrix (ECM) features three sections, Fundamental Science, Pre-Clinical and Translational Science, and Clinical Applications. In the Fundamental Science section, we will cover the spectrum of basic ECM science from ECM's role in development, biomechanical properties, cardiac ECM influence of cardiomyocyte biology, pathophysiology of ECM in heart disease, and ECM in tissue engineering. Section two, Preclinical and Translational Science, will discuss cardiac ECM technologies in the clinical pipeline including approaches to ECM as a therapeutic, animal models of cardiac research, tracking and imaging methods of cardiac ECM, and cGMP manufacturing and regulatory considerations for ECM based therapeutics. Finally, the third section, Clinical Applications, will highlight the clinical experience around cardiac ECM including therapeutic strategies targeting scar tissue in the heart, Clinical trial design and regulatory considerations, current human clinical trials in cardiovascular medicine and the role of pharmaceutical and biotech companies in the commercialization of ECM technologies for cardiovascular indications. This book provides a comprehensive review for basic and translational researchers as well as clinical practitioners and those involved in commercialization, regulatory and entrepreneurial activities.
This book brings together contributions from global experts who have helped to facilitate the exciting and rapid advances that are taking place in microbial metabolomics. The main application of this field is in clinical and veterinary microbiology, but there is a great potential to apply metabolomics to help to better understand complex biological systems that are dominated by multiple-species microbial populations exposed to changing growth and nutritional conditions. In particular, environmental (e.g., water, soil), food (e.g., microbial spoilage, food pathogens), and agricultural and industrial applications are seen as developing areas for microbial metabolomics. As such, the book includes contributions with clinical, environmental, and industrial perspectives.
This book highlights recent advances in and diverse techniques for exploring the plasma membrane's structure and function. It starts with two chapters reviewing the history of membrane research and listing recent advances regarding membrane structure, such as the semi-mosaic model for red blood cell membranes and the protein layer-lipid-protein island model for nucleated tissue cell membranes. It subsequently focuses on the localization and interactions of membrane components, dynamic processes of membrane transport and transmembrane signal transduction. Classic and cutting-edge techniques (e.g. high-resolution atomic force microscopy and super-resolution fluorescence microscopy) used in biophysics and chemistry are presented in a very comprehensive manner, making them useful and accessible to both researchers in the field and novices studying cell membranes. This book provides readers a deeper understanding of the plasma membrane's organization at the single molecule level and opens a new way to reveal the relationship between the membrane's structure and functions, making it essential reading for researchers in various fields. |
![]() ![]() You may like...
Groundwater Contamination in Coastal…
Senapathi Venkatramanan, Selvam Sekar, …
Paperback
R3,124
Discovery Miles 31 240
|