![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Cellular biology
Fascinating biology occurs at epithelial interfaces, whether between organism and environment or within body compartments, and many diseases inflicting huge personal and societal burdens result from dysfunction of epithelial systems, e.g., carcinomas. Epithelial cell cultures have been an integral and crucial part of the biomedical research enterprise, adding unique capabilities and enabling mechanistic approaches. In the past decade there have been many research advances, such as directed differentiation of embryonic stem cells and induced pluripotent stem cells, robotic high throughput screening, whole genome siRNA and shRNA libraries, massively parallel sequencing at low cost, identification of somatic stem cells in key organs, to name a few. Epithelial Cell Culture Protocols, Second Edition provides a cross section of up-to-date culture protocols for the most heavily studied cell systems and featured supporting technologies. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Epithelial Cell Culture Protocols, Second Edition will serve outstanding investigators with the best possible information for the advancement of biomedical science.
The principle objective of this book is to help undergraduate students in the analysis of genetic problems. Many students have a great deal of difficulty doing genetic analysis, and the book will be useful regardless of which genetics text is being used. Most texts provide some kinds of problems and answers: few, if any, however, show the students how to actually solve the problem. Often the student has no idea how the answer was derived. This work emphasizes solutions, not just answers. The strategy is to provide the student with the essential steps and the reasoning involved in conducting the analysis. Throughout the book, an attempt is made to present a balanced account of genetics. Topics, therefore, center about Mendelian, cytogenetic, molecular, quantitative, and population genetics, with a few more specialized areas. Whenever possible the student is provided with the appropriate basic statistics necessary to make some the analyses. The book also builds on itself; that is, analytical methods learned in early parts of the book are subsequently revisited and used for later analyses. A deliberate attempt is made to make complex concepts simple, and sometimes to point out that apparently simple concepts are sometimes less so on further investigation. Any student taking a genetics course will find this book an invaluable aid to achieving a good understanding of genetic principles and practice.
The CFTR chloride channel is one of the most well studied transport proteins in biology. Yet there remain many mysteries about the functional properties and biological roles of this ABC transporter. The Cystic Fibrosis Transmembrane Conductance Regulator addresses a select series of hot' topics that relate to the function of CFTR, and the links between CFTR dysfunction and human disease (i.e., cystic fibrosis). The timeliness of these topics distinguishes this collection from previous volumes of this type. Given the general interest in CFTR, this collection will appeal to a broad readership with interests in CFTR, cystic fibrosis, ion channels and ABC transporters.
This volume discusses recent advances in avian and reptilian biology that have caused this diverse field to re-emerge. The chapters in this book are divided into 4 parts: genomics and transcriptomics, genetic manipulation, stem cells, and new model systems. Part I details how to perform genomic and transcriptomic analyses in birds and reptiles; Part II highlights technological advancements in avian genetic manipulation; Part III focuses on methods to handle pluripotent cells; and part IV looks at the emerging models in avian and reptilian developmental biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Avian and Reptilian Developmental Biology: Methods and Protocols explores a var iety of approaches and different sauropsid models that will help facilitate communication and collaboration among researchers, which in turn will progress this field forward.
This volume provides in-depth reviews of model systems that exemplify the arms race in host-pathogen interactions. Somatic adaptations are responsible for the individualization of biological responses to the environment, and the continual struggle between host immune systems and invading pathogens has given rise to corresponding processes that produce molecular variation. Whether in mollusks or human beings, various host somatic mechanisms have evolved independently, providing responses to counter rapidly-changing pathogens. The pathways they utilize can include non-heritable changes involving RNA and post-translational modifications, or changes that produce somatic DNA recombination and mutation. For infectious organisms such as protozoans and flatworms, antigenic variation is central to their survival strategy. Evolving the ability to evade the host immune system not only increases their chances of survival but is also necessary for successful re-infection within the host population.
DeFelice presents this intricate subject in an easy-to-follow, stepwise fashion: he reviews the fundamentals of electricity; transfers those principles to a biological context; and expands the discussion to encompass the subject's practical dimensions. Clear definitions and intuitive descriptions characterize the presentation, which is complemented by over 150 drawings and graphs. Mathematics is kept to the minimum necessary. The text covers both excitable and non-excitable membranes and includes the plasma membrane as well as intracellular membranes. A unique, electronics-made-simple' appendix, designed specifically for biologists, treats the operational amplifiers used in patch clamp, and other appendices offer solutions to equations and examples that illustrate principles.
Membranes are highly dynamic and operate not only as inert
boundaries, but the packages they carry around in a cell are well
addressed fro appropriate delivery. This holds for a variety of
endomembrane systems engaged in exo- and endocytosis, for
organelles along the biosynthetic pathway, phagosomes, and
lysosomes. It also holds for the establishment of functional
surface properties. Cell pairing (conjugation) phenomena are a good
model for the problem of how a cell can discriminate between "self"
and "non-self." On the other hand parasitic sporozoa developed to
experts in masking their molecular sur-"face"by frequent shedding
of their variant antigens.
This book presents basic concepts, methodologies and applications of biotechnology for the conservation and propagation of aromatic, medicinal and other economic plants. It caters to the needs and challenges of researchers in plant biology, biotechnology, the medical sciences, pharmaceutical biotechnology and pharmacology areas by providing an accessible and cost-effective practical approach to micro-propagation and conservation strategies for plant species. It also includes illustrations describing a complete documentation of the results and research into particular plant species conducted by the authors over the past 5 years. Plant Biotechnology has been a subject of academic interest for a considerable time. In recent years, it has also become a useful tool in agriculture and medicine, as well as a popular area of biological research. Current economic growth is globally projected in a highly positive manner, but the challenges many countries face with regard to food, feed, malnutrition, infectious diseases, the newly identified life-style diseases, and energy shortages, all of which are worsened by an ever-deteriorating environment, continue to pull the growth digits back. The common thread that connects all of the above challenges is biotechnology, which could provide many answers. Molecular biology and biotechnology have now become an integral part of tissue culture research. The tremendous impact generated by genetic engineering and consequently of transgenics now allows us to manipulate plant genomes at will. There has indeed been a rapid development in this area with major successes in both developed and developing countries. The book introduces several new and exciting areas to researchers who are unfamiliar with plant biotechnology and also serves as a review of ongoing research and future directions for scholars. The book highlights numerous methods for in vitro propagation and utilization of techniques in raising transgenics to help readers reproduce the experiments discussed.
This important book traces the history of genetics and genomics policy in Britain. Detailing the scientific, political, and economic factors that have informed policy and the development of new health services, the book highlights the particular importance of the field of Public Health Genomics. Although focused primarily on events in Britain, the book reveals a number of globally applicable lessons. The authors explain how and why Public Health Genomics developed and the ways in which genetics and genomics have come to have a central place in many important health debates. Consideration of their ethical, social, and legal implications and ensuring that new services that are equitable, appropriate, and well-targeted will be central to effective health planning and policymaking in future. The book features: Interviews with leading individuals who were intimately involved in the development of genetics and genomics policy and Public Health Genomics Insights from experts who participated in a pair of 'witness seminars' Historical analysis exploiting a wide range of primary sources Written in a clear and accessible style, this book will be of interest to those involved in the research and practice of genetics, genomics, bioethics, and population health, but also to NHS staff, policymakers, politicians, and the public. It will also be valuable supplementary reading for students of the History of Medicine and Health, Public Health, and Biomedical Sciences.
The field of neurotrophic factors has witnessed exp- sive growth in the past decade. As is usual in scientific in- vation, this progress has been closely associated with methodological advances. The introduction of molecular b- logical techniques into the neurotrophic factor field led to the discovery of new families of neurotrophic growth f- tors and their receptors. Production of growth factors by recombinant technology played a crucial part. The example of nerve growth factor, the paradigmatic neurotrophic factor, illustrates this point. A decade ago investigators were forced to purify small quantities of this protein from murine salivary glands, but much larger qu- tities of recombinant nerve growth factor are now available for experimentation as well as clinical development. A decade ago there was a controversy about the existence of nerve growth factor in the brain and the immunoassays used for its measurement, but current publications report the precise localization of gene expression for nerve growth factor and its receptor in the brain. Neurotrophic Factors aims at presenting the techniques that have been crucial to the realization of these rapid advances and thus have helped propel the neurotrophic factors field to its current status of high visibility. These techniques range from molecular biological methods used for cloning and production, to cell culture methods for assessing biological activities, to animal models of nervous system injury (nec- sary for the development of therapeutic agents from neurotrophic factors).
It is now established that dysregulated cell stress response pathways play a critical role in tumorigenesis, and a refined mechanistic understanding of this phenomenon at the molecular level promises to open new avenues for targeted therapeutic strategies that may benefit cancer patients in the near future. Coauthored by recognized leaders in cancer research from five continents, this novel book provides a comprehensive perspective on cell stress response pathways and therapeutic opportunities. Focusing on the role of genotoxic, proteotoxic, oxidative, metabolic, and inflammatory stress in tumorigenesis, the book is essential reading for students, basic researchers, and biomedical health care professionals interested in cancer and therapeutic development.
Animal cells are the preferred "cell factories" for the production of complex molecules and antibodies for use as prophylactics, therapeutics or diagnostics. Animal cells are required for the correct post-translational processing (including glycosylation) of biopharmaceutical protein products. They are used for the production of viral vectors for gene therapy. Major targets for this therapy include cancer, HIV, arthritis, cardiovascular and CNS diseases and cystic fibrosis. Animal cells are used as in vitro substrates in pharmacological and toxicological studies. This book is designed to serve as a comprehensive review of animal cell culture, covering the current status of both research and applications. For the student or R&D scientist or new researcher the protocols are central to the performance of cell culture work, yet a broad understanding is essential for translation of laboratory findings into the industrial production. Within the broad scope of the book, each topic is reviewed authoritatively by experts in the field to produce state-of-the-art collection of current research. A major reference volume on cell culture research and how it impacts on production of biopharmaceutical proteins worldwide, the book is essential reading for everyone working in cell culture and is a recommended volume for all biotechnology libraries.
Revealing essential roles of the tumor microenvironment in cancer progression, this book provides a comprehensive overview of the latest research on how different signaling pathways are important in the tumor microenvironment. Multiple signaling pathways are covered, including S1P, neuregulin, Notch, erythropoietin, Rho-ROCK, mTOR, and more. Taken alongside its companion volumes, these books update us on what we know about various aspects of the tumor microenvironment as well as future directions. Tumor Microenvironment: Signaling Pathways - Part A is essential reading for advanced cell biology and cancer biology students as well as researchers seeking an update on research in the tumor microenvironment.
The main argument of this book is that cell signalling via nerves, hormones, local mediators and growth factors are not distinct phenomena, but branches of one general mechanism and should therefore be studied in an integrated manner. This volume is designed to act as a bridge between general texts and is aimed at biologists coming to the topic from a variety of backgrounds. The first two chapters introduce the general concepts of intracellular signalling and also cover the topic of direct cell-to-cell communication by cytoplasmic bridges (gap junctions). The remaining chapters cover the first and second messengers, starting with their structure, synthesis and release, progressing to the target cell and then working from the membrane inwards towards the nucleus. There is also a section on the mechanism of nervous conduction and the regulation of the ionic balace of cells. The final chapters discuss the regulation of cell growth and division and the special case of messengers acting via nuclear receptors.
Imaging Cellular and Molecular Biological Function provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. The chapter content ranges from the basic through to complex overview of method and protocols, and there is also practical and detailed how-to content on important, but rarely addressed topics. This first edition features all-colour-plate chapters. The philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions."
The Eukaryotic Cell Cycle gives an overview of the stages of the
eukaryotic cell cycle, as well as discussing important experiments,
research, organisms of interest and findings connected to each
stage of the cycle and the components involved in these. This volume, written by respected researchers, gives an excellent account of the eukaryotic cell cycle that is suitable for graduate and postdoctoral researchers.
There has always been some tension between proponents of hypothesis-driven and discovery-driven research in the broad field of life sciences. Academic research has been primarily focused on hypothesis-driven research. However, the success of the human genome project, a discovery-driven research approach, has opened the door to adding other types of discovery-driven research to a continuum of research approaches. In contrast, drug discovery research in the pharmaceutical industry has embraced discovery-driven research for many years. A good example has been the discovery of active compounds from large chemical libraries, through screening campaigns. The success of the human genome project has also demonstrated the need for both academic researchers and industrial researchers to now understand the functions of genes and gene products. The cell is the basic unit of life and it has been at the cellular level where function can be demonstrated most cost-effectively and rapidly. High content screening (HCS) was developed by Cellomics Inc. in the mid-1990s to address the need for a platform that could be used in the discovery-driven research and development required to understand the functions of genes and gene products at the level of the cell.
If theoretical physicists can seriously entertain canonical "standard models" even for the big-bang generation of the entire universe, why cannot life scientists reach a consensus on how life has emerged and settled on this planet? Scientists are hindered by conceptual gaps between bottom-up inferences (from early Earth geological conditions) and top-down extrapolations (from modern life forms to common ancestral states). This book challenges several widely held assumptions and argues for alternative approaches instead. Primal syntheses (literally or figuratively speaking) are called for in at least five major areas. (1) The first RNA-like molecules may have been selected by solar light as being exceptionally photostable. (2) Photosynthetically active minerals and reduced phosphorus compounds could have efficiently coupled the persistent natural energy flows to the primordial metabolism. (3) Stochastic, uncoded peptides may have kick-started an ever-tightening co-evolution of proteins and nucleic acids. (4) The living fossils from the primeval RNA World thrive within modern cells. (5) From the inherently complex protocellular associations preceding the consolidation of integral genomes, eukaryotic cell organization may have evolved more naturally than simple prokaryote-like life forms. - If this book can motivate dedicated researchers to further explore the alternative mechanisms presented, it will have served its purpose well.
The cerebral neocortex, a structure unique to the mammalian brain and prerequisite for higher cognitive functions, has since decades attracted the curiosity of neurobiologists and developmental biologists alike. This volume gives a comprehensive and up-to-date overview of early cortical development. It provides concise information on the birth, specification, migration and terminal differentiation of neocortical cells. Both the cellular and molecular events leading to the establishment of a functional neocortex are presented in considerable detail, and possible implications for neurodegenerative diseases are discussed.
This volume provides readers with a wide collection of the latest and readily reproducible technical protocols available in the field of non-viral gene delivery vectors. The chapters in this book are organized into three major parts: Part I is a section on conventional bolus gene delivery vectors that introduces typical transfection approaches relying on the addition of transfectants to the cell culture medium where the cells are grown in; Part II covers stimuli-responsive bolus transfectants and topics on gene delivery complexes made of smart polymers or stimuli-responsive polymers that change according to the environment they are in and delivered by dripping into cells; Part III discusses examples of substrate-mediated gene delivery-also termed reverse transfection-and the immobilization of a gene delivery vector onto a surface as opposed to more typical bolus delivery from the medium. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Non-Viral Gene Delivery Vectors: Methods and Protocols is written for experimentalists, and is an essential part of many laboratory bookshelves. This book will help novice and professionals alike succeed in their research in this field.
This volume explores protocols for identifying mutant mice and characterizing parts of their anatomical, functional, cellular, and molecular phenotypes. The chapters in this book look at anatomical and functional phenotyping using quantitative imaging, isolation of specific embryonic cell types for cell culture, analysis of gene expression, and how to define chromatin structure. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Mouse Embryogenesis: Methods and Protocols is a valuable resource for experimentalists interested in discovering new aspects of embryogenesis control, organ function, and the origin of disease.
This detailed volume provides a comprehensive resource covering the existing and state-of-the-art tools in the field of profiling chromatin accessibility and its dynamics. Beginning with a section on bulk-cell methods for profiling chromatin accessibility and nucleosome positioning that rely on enzymatic cleavage of accessible DNA and produce information about relative accessibility, the book continues with methods that use single-molecule and enzymatic approaches to solving the problem of mapping absolute occupancy/accessibility, emerging tools for mapping DNA accessibility and nucleosome positioning in single cells, imaging-based methods for visualizing accessible chromatin in its nuclear context, as well as computational methods for the processing and analysis of chromatin accessibility datasets. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Chromatin Accessibility: Methods and Protocols serves as an extensive and useful reference for researchers studying different facets of chromatin accessibility in a wide variety of biological contexts. Chapter 6 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.
During the last two decades, the prevalence of obesity has dramatically increased in western and westernized societies. Its devastating health consequences include hypertension, cardiovascular diseases, or diabetes and make obesity the second leading cause of unnecessary deaths in the USA. As a consequence, obesity has a strong negative impact on the public health care systems. Recently emerging scienti?c insight has helped understanding obesity as a complex chronic disease with multiple causes. A multileveled gene-environment interaction appears to involve a substantial number of susceptibility genes, as well as associations with low physical activity levels and intake of high-calorie, low-cost, foods. Unfor- nately, therapeutic options to prevent or cure this disease are extremely limited, posing an extraordinary challenge for today's biomedical research community. Obesity results from imbalanced energy metabolism leading to lipid storage. Only detailed understanding of the multiple molecular underpinnings of energy metabolism can provide the basis for future therapeutic options. Numerous aspects of obesity are currently studied, including the essential role of neural and endocrine control circuits, adaptive responses of catabolic and anabolic pathways, metabolic fuel sensors, regulation of appetite and satiation, sensory information processing, transcriptional control of metabolic processes, and the endocrine role of adipose tissue. These studies are predominantly fuelled by basic research on mammalian models or clinical studies, but these ?ndings were paralleled by important insights, which have emerged from studying invertebrate models.
This second edition provides updated and new chapters on selected genetic, molecular, biochemical, and cell biological techniques. Chapter's guide readers through methods and principles on primordial germ cells and germline stem cells, however many of these principles can be applied to different types of adult stem cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Germline Stem Cells: Second Edition aims to present the new findings and techniques that have developed since the first edition. |
![]() ![]() You may like...
Active Control of Vibration
Christopher C. Fuller, S.J. Elliott, …
Paperback
The Political Economy of Television…
T. Evens, P. Iosifidis, …
Hardcover
R1,980
Discovery Miles 19 800
Software for Exascale Computing - SPPEXA…
Hans-Joachim Bungartz, Philipp Neumann, …
Hardcover
R3,040
Discovery Miles 30 400
Self-Aware Computing Systems
Samuel Kounev, Jeffrey O. Kephart, …
Hardcover
R5,313
Discovery Miles 53 130
|