![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Cellular biology
For over forty years, mesenchymal stem cells (MSCs) have been scrutinized and studied, garnering much attention due to their broad therapeutic efficacy. In Mesenchymal Stem Cells: Methods and Protocols, leaders in the field were assembled to contribute detailed methodologies for the isolation and characterization of human and rodent MSCs. Recently, these vital cells have shown therapeutic benefits in the treatment of myocardial infarction, stroke, lung diseases, spinal cord injury and other neurological disorders, thus promising a boundless future in their study. Cutting edge and easy to use, Mesenchymal Stem Cells: Methods and Protocols is the perfect resource for scientists attempting to pursue this important and ever-developing field of research.
Heat Shock Proteins and Plants provides the most up-to-date and concise reviews and progress on the role of heat shock proteins in plant biology, structure and function and is subdivided into chapters focused on Small Plant HSPs (Part I), Larger Plant HSPs (Part II) and HSPs for Therapeutic Gain (Part III). This book is written by eminent leaders and experts from around the world and is an important reference book and a must-read for undergraduate, postgraduate students and researchers in the fields of Agriculture, Botany, Crop Research, Plant Genetics and Biochemistry, Biotechnology, Drug Development and Pharmaceutical Sciences.
This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more recent studies of mitochondria function, their communication with other organelles, and their critical roles in development, aging, and in a plethora of stressful or degenerative events. Authored by leading researchers in the field, this volume will be an indispensable reference resource for graduate students and academics working in related areas of biophysics and cell biology as well as for professionals within industry.
Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the Biology of Extracellular Matrix series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
It has become clear that tumors arise from excessive cell proliferation and a c- responding reduction in cell death. Tumors result from the successive accumulation of mutations in key regulatory target genes over time. During the 1980s, a number of oncogenes were characterized, whereas from the 1990s to the present, the emphasis shifted to tumor suppressor genes (TSGs). It has become clear that oncogenes and tumor suppressor genes function in the same pathways, providing positive and ne- tive growth regulatory activities. The signaling pathways controlled by these genes involve virtually every process in cell biology, including nuclear events, cell cycle, cell death, cytoskeletal, cell membrane, angiogenesis, and cell adhesion effects. Tumor suppressor genes are mutated in hereditary cancer syndromes, as well as somatically in nonhereditary cancers. In their normal state, TSGs control cancer development and p- gression, as well as contribute to the sensitivity of cancers to a variety of therapeutics. Understanding the classes of TSGs, the biochemical pathways they function in, and how they are regulated provides an essential lesson in cancer biology. We cannot hope to advance our current knowledge and to develop new and more effective therapies without understanding the relevant pathways and how they influence the present approaches to therapy. Moreover, it is important to be able to access the powerful tools now available to discover these genes, as well as their links to cell biology and growth control.
This fascinating volume addresses the processes and mechanisms taking place in the cell during meiosis and recombination. It covers multicellular eukaryotes such as Drosophila, Arabidopsis, mice and humans. Once per life cycle, mitotic nuclear divisions are replaced by meiosis I and II reducing chromosome number from the diploid level to a haploid genome, reshuffling the homologous chromosomes by their centromeres, and recombining chromosome arms by crossing-over.
The processes of aging and death remain one of the most fascinating, and mysterious, areas of biological research. Huge anomalies between species raise questions the answers to which could have fundamental implications for the field of medical science. As scientists unlock the secrets of the exceptionally long-lived little brown bat (up to 34 years), or the common budgerigar, for example, which despite having a metabolic rate 1.5 times that of a laboratory mouse, can live for up to 20 years, it has become more important than ever to be able to make a comparative analysis of the various species used in research. Dealing with every one of the mammalian species that are employed in laboratory research, this is the first book on the subject of aging that provides detailed comparative data for age-related changes in its subjects. It does so at the level of the whole animal, its organs, organelles and molecules. The comparative data, supplied in 15 chapters by leading experts, provides information on fields as disparate as telomere function and loss, the importance of the Sirtuins and Tor, the influence of hormones on lifespans, the relationship between body size and lifespan, the effects of restricted calorific intake, age-related changes in cell replication, and DNA damage and repair. Chapters are devoted to cardiac aging, comparative skeletal muscle aging, the aging of the nervous and immune systems, the comparative biology of lyosomal function and how it is affected by age, and many other key areas of research. This much-needed text will provide scientists working in a wide spectrum of fields with key data to aid them in their studies.
The diverse applications in this volume range from the study of allosteric regulation of ion channel activity using a classic mutagenesis approach, to the study of channel subunit stoichiometry using a novel biophysical approach based on fluorescence resonance energy transfer. Highlights include methods for heterologous expression of ion channels in cells, for determining channel structure-function, and for studying channel regulation.
International Review of Cytology presents current advances and
comprehensive reviews in cell biology-both plant and animal.
Articles address structure and control of gene expression,
nucleocytoplasmic interactions, control of cell development and
differentiation, and cell transformation and growth. Authored by
some of the foremost scientists in the field, each volume provides
up-to-date information and directions for future research.
Membrane proteins, representing nearly 40% of all proteins, are key components of cells involved in many cellular processes, yet only a small number of their structures have been determined. Membrane Protein Structure Determination: Methods and Protocols presents many detailed techniques for membrane protein structure determination used today by bringing together contributions from top experts in the field. Divided into five convenient sections, the book covers various strategies to purify membrane proteins, approaches to get three dimensional crystals and solve the structure by x-ray diffraction, possibilities to gain structural information for a membrane protein using electron microscopy observations, recent advances in nuclear magnetic resonance (NMR), and molecular modelling strategies that can be used either to get membrane protein structures or to move from atomic structure to a dynamic understanding of a molecular functioning mechanism. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and easy to use, Membrane Protein Structure Determination: Methods and Protocols serves as an ideal reference for scientists seeking to further our knowledge of these vital and versatile proteins as well as our overall understanding of the complicated world of cell biology.
A study of mast cells and basophils, designed for the use of immunologists, biochemists and medical researchers. Detailed chapters cover all aspects of mast cell and basophil research, from cell development, proteases, histamine, cysteinyl leukotrienes, physiology and pathology to the role of these cells in health and disease. Chapters also discuss the clinical implications of histamine receptor antagonists.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Folding for the Synapse addresses the current view on how protein folding and misfolding, controlled by molecular chaperones, contribute to synapse function and dysfunction. Molecular chaperones have been studied in relation to de novo protein folding, but there is increasing awareness that chaperone function is required for the regulation of protein dynamics when functioning physiologically as an isolated moiety or part of a protein complex. This book will introduce both important concepts of folding machineries and give examples of the biological relevance of further chaperone functions.
This volume includes a series of protocols focused on mitotic spindle assembly and function. The methods covered in this book feature a broad range of techniques from basic microscopy to the study of spindle physiologies relevant to cancer. These methods can be applied to diverse model systems that range from the cell-free Xenopus egg extract system to the moss Physcomitrella patens, in an effort to demonstrate the key contributions made by researchers using multiple model organisms. Chapters in The Mitotic Spindle: Methods and Protocols integrate cutting-edge technologies that have only become available due to the cross-disciplinary efforts, such as ATP analogue sensitive inhibition of mitotic kinases. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and informative, The Mitotic Spindle: Methods and Protocols, is a valuable resource for researchers who are new to mitosis or are already experts in the field.
This book gathers together contributions from internationally renowned authors in the field of cardiovascular systems and provides crucial insight into the importance of sex- and gender-concepts during the analysis of patient data. This innovative title is the first to offer the elements necessary to consider sex-related properties in both clinical and basic studies regarding the heart and circulation on multiscale levels (i.e. molecular, cellular, electrophysiologically, neuroendocrine, immunoregulatory, organ, allometric, and modeling). Observed differences at (ultra)cellular and organ level are quantified, with focus on clinical relevance and implications for diagnosis and patient management. Since the cardiovascular system is of vital importance for all tissues, Sex-Specific Analysis of Cardiovascular Function is an essential source of information for clinicians, biologists, and biomedical investigators. The wide spectrum of differences described in this book will also act as an eye-opener and serve as a handbook for students, teachers, scientists and practitioners.
Although embryonic stem cells currently enjoy the public limelight and show great pr- ise for cell based medical therapies, it is the adult stem cells which are responsible for the body's natural ability to fght disease, heal and recover, or fail and succumb to various maladies. The study of mammalian adult stem cells has surged recently, most likely from a maturation of stem cell studies in the classical developmental model organisms and in hematopoeisis. All the tissues of the body examined so far are generated and regenerated from stem cells, it has been an important frst step to adapt or devise new methods to identify and obtain these cells in quantity and purity for further study. Culture techniques have been optimized for managing the growth and differentiation of stem cells in vitro; as some stem cells are pluripotent, often the method is to guide the fate of such cells among the possible differentiation fates. Much of this work, and that in the classical model org- isms, has helped defne the aspects of the stem cell environment or niche that are crucial for both growth and differentiation, and these studies have moved in vivo at increasingly higher resolution. Importantly, the in vivo niche is a current target for bioengineering the matrix and signaling factors. Herein, we present methods for studying six types of mammalian stem cells, m- mary, neural, mesenchymal, endothelial, dendritic, and muscle.
This informative publication brings together knowledge of various
aspects of cellular regulation. Current Topics in Cellular
Regulation reviews the progress being made in those specialized
areas of study that have undergone substantial development. It also
publishes provocative new theories and concepts and serves as a
forum for the discussion of general principles.
In step with the surge of interest in the endoplasmic reticulum, the current volume takes an integrated look at this functionally diverse organelle. Coverage includes protein translocation and export, lipid metabolism, antigen presentation, and many other subjects, gleaned from such diverse fields as cell biology, enzymology and membrane biochemistry, immunology, and signal transduction.
"Cardiac Tissue Engineering: Methods and Protocols "presents a collection of protocols on cardiac tissue engineering from pioneering and leading researchers around the globe. These include methods and protocols for cell preparation, biomaterial preparation, cell seeding, and cultivation in various systems. Written in the highly successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, "Cardiac Tissue Engineering: Methods and Protocols "highlights the major techniques, both experimental and computational, for the study of cardiovascular tissue engineering.
This volume describes high-throughput approaches to a series of robust, established methodologies in molecular genetic studies of population samples. Such developments have been essential not only to linkage and association studies of single-gene and complex traits in humans, animals and plants, but also to the characterisation of clone banks, for example in mapping of genomes. Chapters have been written by developers or highly experienced end-users concerned with a diverse array of biological applications. The book should appeal to any researcher for whom costs and throughput in their genetics laboratory have become an issue.
The chapters contained in this two-volume set provide a broad
perspective on the novel strategies and conceptual paradigms that
drive the current resurgence of interest in somitogenesis - the
process by which somites form and elaborate differentiated tissues
and structures. Because somites are a ubiquitous feature of
vertebrate embryos, they can be studied in a variety of
experimental animal models including those amenable to genetic
(zebrafish, mammalian), molecular/genetic (mammalian, avian) as
well as those already well established for classical experimental
embryological and cell biological studies (amphibians, avian). The
wide variety of experimental approaches to somitogenesis that are
presented in these volumes will leave the reader with a broad
perspective on how current research in somitogenesis is helping to
solve fundamental questions in vertebrate development and
morphogenesis.
This book summarizes all the important aspects of CRLs (Cullin-RING E3 Ubiquitin Ligases), while providing details of mechanistic specifics that go beyond protein ubiquitination and neddylation. Ubiquitin ligases, including the CRLs, which are activated by neddylation, play an important role in diverse biological processes and are involved in various human diseases, particularly cancer. The book covers various topics, such as CRL structure, biology, genetics, its regulation by neddylation, its pivotal role in human disease, and its potential in drug discovery and targeted therapies. The book appeals to biochemists and biologists working in other fields, and, given the importance of CRLs in all aspects of cell biology and the great promise of targeting these complexes for therapy, is a valuable resource anyone interested in modern biology or medicine.
Ion channels are membrane proteins that act as gated pathways for
the movement of ions across cell membranes. They play essential
roles in the physiology of all cells. In recent years, an
ever-increasing number of human and animal diseases have been found
to result from defects in ion channel function. Most of these
diseases arise from mutations in the genes encoding ion channel
proteins, and they are now referred to as the
channelopathies.
Prokaryotic Toxins - Antitoxins gives the first overview of an exciting and rapidly expanding research field. Toxin - antitoxin (TA) genes were discovered on plasmids 30 years ago. Since then it has become evident that TA genes are highly abundant in bacterial and archaeal chromosomes. TA genes code for an antitoxin that combine with and neutralize a cognate toxin. When activated, the toxins inhibit protein synthesis and cell growth and thereby induce dormancy and multidrug tolerance (persistence). Remarkably, in some species, the TA gene families have undergone dramatic expansions. For example, the highly persistent major human pathogen Mycobacterium tuberculosis has "100 TA loci. The large expansion of TA genes by some organisms is a biological mystery. However, recent observations indicate that TA genes contribute cumulatively to the persistence of bacteria. This medically important phenomenon may thus for the first time become experimentally tractable at the molecular level.
This volume supplements Volumes 63, 64, 87, and 249 of Methods in
Enzymology. These volumes provide a basic source for the
quantitative interpretation of enzyme rate data and the analysis of
enzyme catalysis. Among the major topics covered are Engergetic
Coupling in Enzymatic Reactions, Intermediates and Complexes in
Catalysis, Detection and Properties of Low Barrier Hydrogen Bonds,
Transition State Determination, and Inhibitors. |
![]() ![]() You may like...
Economics and Environmental Change - The…
Clement A. Tisdell
Hardcover
R3,146
Discovery Miles 31 460
Primate Life Histories, Sex Roles, and…
Urs Kalbitzer, Katharine M. Jack
Hardcover
R4,412
Discovery Miles 44 120
Rhino War - A General's Bold Strategy In…
Johan Jooste, Tony Park
Paperback
![]()
Rewilding Africa - Restoring The…
Grant Fowlds, Graham Spence
Paperback
![]()
Islands in the Sand - Ecology and…
Daniel A. McCarthy, Kenyon C. Lindeman, …
Hardcover
R5,173
Discovery Miles 51 730
|