![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Cellular biology
The field of genetics is rapidly evolving, and new medical breakthroughs are occurring as a result of advances in our knowledge of genetics. Advances in Genetics continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines.
This book takes the reader on a journey, navigating the enigmatic aspects of cooperation; a journey that starts inside the body and continues via our thoughts to the human super-organism. Cooperation is one of life's fundamental principles. We are all made of parts - genes, cells, organs, neurons, but also of ideas, or 'memes'. Our societies too are made of parts - us humans. Is all this cooperation fundamentally the same process? From the smallest component parts of our bodies and minds to our complicated societies, everywhere cooperation is the organizing principle. Often this cooperation has emerged because the constituting parts have benefited from the interactions, but not seldom the cooperating units appear to lose on the interaction. How then to explain cooperation? How can we understand our intricate societies where we regularly provide small and large favors for people we are unrelated to, know, or even never expect to meet again? Where does the idea come from that it is right to risk one's life for country, religion or freedom? The answers seem to reside in the two processes that have shaped humanity: biological and cultural evolution.
This book presents the latest advances in marine structures and related biomaterials for applications in both soft- and hard-tissue engineering, as well as controlled drug delivery. It explores marine structures consisting of materials with a wide variety of characteristics that warrant their use as biomaterials. It also underlines the importance of exploiting natural marine resources for the sustainable development of novel biomaterials and discusses the resulting environmental and economic benefits. The book is divided into three major sections: the first covers the clinical application of marine biomaterials for drug delivery in tissue engineering, while the other two examine the clinical significance of marine structures in soft- and hard-tissue engineering, respectively. Focusing on clinically oriented applications, it is a valuable resource for dentists, oral and maxillofacial surgeons, orthopedic surgeons, and students and researchers in the field of tissue engineering.
This volume covers data describing the role of free radicals and antioxidants in respiratory disorders, including the data that deal with clinical and pre-clinical trials. Chapters describe the relationship of oxidative stress to a number of respiratory and pulmonary conditions from a basic science and clinical perspective, including chronic obstructive pulmonary disease, asthma, acute lung injury, pulmonary hypertension, toxicity and fibrosis, cancer and asbestosis. The book also discusses the use of conventional biomarkers of oxidative stress and breath condensates as adjuncts to classical laboratory testing, the effect of antioxidants on cellular protection, as well as the development of novel antioxidant modalities.
This new volume of Methods in Cell Biology looks at methods for analyzing correlative light and electron microscopy (CLEM). With CLEM, people try to combine the advantages of both worlds, i.e. the dynamics information obtained by light microscopy and the ultrastructure as provided by electron microscopy. This volume contains the latest techniques on correlative microscopy showing that combining two imaging modalities provides more than each technique alone. Most importantly it includes the essential protocols, including tips, tricks and images for you to repeat these exciting techniques in your own lab. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come.
This volume describes our current understanding of the biological role of visual and non-visual arrestins in different cells and tissues, focusing on the mechanisms of arrestin-mediated regulation of GPCRs and non-receptor signaling proteins in health and disease. The book covers wide range of arrestin functions, emphasizing therapeutic potential of targeting arrestin interactions with individual partners.
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.
It is now well known that proteases are found everywhere, in viruses and bacteria as well as in all human, animal and plant cells, and play a role in a variety of biological functions ranging from digestion, fertilization, development to senescence and death. Under physiological conditions the ability of proteases is regulated by endogenous inhibitors. However, when the activity of proteases is not regulated appropriately, disease processes can result, as seen in Alzheimer s disease, cancer metastasis and tumor progression, inflammation and atherosclerosis. Thus it is evident that there is an absolute need for a tighter control of proteolytic activities in different cells and tissues. Aimed at graduate students and researchers with an interest in cellular proteolytic events, "Role of Proteases in Cellular Dysfunctions" is the second book on Proteases in this series. The book consists of three parts in specified topics based on current literatures for a better understanding for the readers with respect to their subject-wise interests. The first section of this book covers a brief idea about the neuronal disorders and the involvement of proteases such as calpains, caspases and matrix metalloproteases (MMPs). The second section covers the deadly disease cancer and its relation to ubiquitin-proteasome system, MMPs and serine proteases. The last section is about the role of proteases such as calpains, MMPs and serine protease as well as urokinase type plasminogen activator receptor (uPAR) in causing cardiovascular defects. "
Autophagy principally serves an adaptive function to protect organisms against diverse human pathologies, including cancer and neurodegeneration. Recent developments using in vitro, ex vivo and in vivo models show the involvement of the autophagy pathway in immunity and inflammation. Moreover, direct interactions between autophagy proteins and immune signalling molecules have also been demonstrated. Defects in autophagy - similar to cancer, neurodegenerative diseases and aging - through autophagy gene mutation and/or microbial antagonism, may underlie the pathogenesis of many infectious diseases and inflammatory syndromes. In spite of the increasing awareness of the importance of autophagy in these pathophysiological conditions, this process remains underestimated and is often overlooked. As a consequence, its role in the initiation, stability, maintenance, and progression of these diseases are still poorly understood. This book reviews the recent advances regarding the functions of the autophagy pathway and autophagy proteins in immunity and inflammation, focusing on their role in self-nonself distinction, their implications in innate and adaptive immune responses and their dysregulation in the pathology of certain inflammatory and autoimmune diseases.
Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and up-to-date, this book offers a valuable guide to these cellular processes whilst inciting researchers to explore their potentially important connections. Volume 5 comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. In spite of the increasing importance of autophagy in the various pathophysiological conditions mentioned above, this process remains underestimated and overlooked. As a consequence, its role in the initiation, stability, maintenance, and progression of these and other diseases remains poorly understood. This book is an asset to newcomers as a concise overview of the diverse disease implications of autophagy, while serving as an excellent reference for more experienced scientists and clinicians looking to update their knowledge. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
Fungi cause a spectrum of diseases in humans ranging from comparatively innocuous superficial skin diseases caused by dermatophytes to invasive life-threatening infections caused by species such as Candida albicans, or Crytococcus neoformans. Due to the opportunistic nature of most invasive mycoses, fungal pathogenicity has proven difficult to define. However the application of new genomic and other molecular techniques in recent years has revolutionized the field revealing fascinating new insights into the mechanisms of fungal pathogenesis. In this book, a panel of high profile authors critically reviews the most important research to provide a timely overview.
This volume provides state-of-the-art techniques for studying various aspects of cholesterol homeostasis, including its uptake, synthesis and efflux from the cell, as well as its trafficking within the cell. Chapters also cover techniques for studying the regulation of cholesterol homeostasis at both the transcriptional and post-translational levels, as well as studying the membrane topology and structure of cholesterol-related proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cholesterol Homeostasis: Methods and Protocols aims to provide key techniques in tackling the investigation of cholesterol homeostasis.
This volume contains protocols specifically designed for studying programmed cell death, and also discusses recent advances in techniques that span broader areas of biology that have been recently used or that have potential to be incorporated into cell death research. The protocols are mostly described in the context of mammalian systems, but also cover other systems such as plants, Drosophila, and yeast. Programmed Cell Death: Methods and Protocols is comprised of 20 chapters: Chapters 1-5 describe apoptosis detection techniques; Chapter 6-9 describe methods for studying apoptosis associated with various pathologies in different organs including the lymphoid compartment, intestinal epithelium, granulocytes, and cardiomyocytes; Chapter 11-13 cover protocols and techniques for studying apoptosis in non-mammalian systems; Chapters 14-16 cover biochemical and biophysical methods for studying Bcl-2 family protein dynamics and protein-protein interactions during apoptosis; and the last four chapters explore protocols that are useful not only in apoptosis research but in wider areas of biological research, such as genome editing, inducible transgenes, and proteomics. Written in the highly successful Methods in Molecular Biology aeries format, chapters include introductions to their respective topics, lists of the necessary material and reagents, step-by-step, readily reproducible laboratory protocol, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Programmed Cell Death: Methods and Protocols is a comprehensive and valuable resource for researchers, ranging from beginner to expert, in their studies on programmed cell death.
Radiation Oncology and Radiotherapy, Part A, Volume 172 in the Methods in Cell Biology series, highlights advances in the field, with this new volume presenting interesting chapters on timely topics, including DNA damage quantification by the COMET assay, Immunofluorescence microscopy-assisted quantification of ATM and ATR activation in irradiated cells, Immunoblotting-based characterization of the DNA damage response, Assessment of lipid peroxidation in irradiated cells, A simple method to assess clonogenic survival of irradiated cancer cells, Quantification of beta-galactosidase activity as a marker of radiation-driven cellular senescence, Cytofluorometric assessment of cell cycle progression in irradiated cells, and more. Other sections cover Assessment of transcription inhibition as a characteristic of immunogenic cell death, Assessment of eIF2a phosphorylation during immunogenic cell death, Quantification of cytosolic DNA species by immunofluorescence and automated image analysis, Flow cytometry-assisted quantification of CALR exposure during immunogenic cell death, Interference of immunogenic anticancer therapy by artificially controlled calreticulin secretion from tumor cells, along with many additional topics of interest.
Epigenetic Shaping of Sociosexual Interactions: From Plants to Humans is the first attempt to interpret the higher social functions of organisms. This volume covers an extraordinarily wide range of biological research and provides a novel framework for understanding human-specific brain functions.
Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection and Aging, Volume 4 - Mitophagy presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson's Disease, cardiac aging, and skeletal muscle atrophy. The most current understanding of the proteins and pathways involved in mitophagy are covered, with specific attention to Nix and Bnip3, PINK1/Parkin, Atg32, and FUNDC1. The role of mitophagy in cancer, neurodegeneration, aging, infection, and inflammation is also discussed providing essential insights into the pathogenesis of a variety of mitochondria dysfunction-related diseases. This book is an asset to newcomers as a concise overview of the current knowledge on mitophagy, while serving as an excellent update reference for more experienced scientists working on other aspects of autophagy. From these well-developed foundations, researchers, translational scientists, and practitioners may work to better implement more effective therapies against some of the most devastating human diseases. Volumes in the Series Volume 1: Molecular Mechanisms. Elucidates autophagy's association with numerous biological processes, including cellular development and differentiation, cancer, immunity, infectious diseases, inflammation, maintenance of homeostasis, response to cellular stress, and degenerative diseases such as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and prion diseases. Volume 2: Role in General Diseases. Describes the various aspects of the complex process of autophagy in a myriad of devastating human diseases, expanding from a discussion of essential autophagic functions into the role of autophagy in proteins, pathogens, immunity, and general diseases. Volume 3: Role in Specific Diseases. Explores the role of autophagy in specific diseases and developments, including: Crohn's Disease, Gaucher Disease, Huntington's Disease, HCV infection, osteoarthritis, and liver injury, with a full section devoted to in-depth exploration of autophagy in tumor development and cancer, as well as the relationship between autophagy and apoptosis. Volume 4: Mitophagy. Presents detailed information on the role of mitophagy, the selective autophagy of mitochondria, in health and disease, by delivering an in-depth treatment of the molecular mechanisms involved in mitophagy initiation and execution, as well as the role of mitophagy in Parkinson Disease, cardiac aging, and skeletal muscle atrophy. Volume 5: Role in Human Diseases. Comprehensively describes the role of autophagy in human diseases, delivering coverage of the antitumor and protumor roles of autophagy; the therapeutic inhibition of autophagy in cancer; and the duality of autophagy's effects in various cardiovascular, metabolic, and neurodegenerative disorders. Volume 6: Regulation of Autophagy and Selective Autophagy. Provides coverage of the mechanisms of regulation of autophagy; intracellular pathogen use of the autophagy mechanism; the role of autophagy in host immunity; and selective autophagy. Volume 7: Role of Autophagy in Therapeutic Applications. Provides coverage of the latest developments in autophagosome biogenesis and regulation; the role of autophagy in protein quality control; the role of autophagy in apoptosis; autophagy in the cardiovascular system; and the relationships between autophagy and lifestyle. Volume 8: Autophagy and Human Diseases. Reviews recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, and introduces new, more effective therapeutic strategies, in the development of targeted drugs and programmed cell death, providing information that will aid on preventing detrimental inflammation. Volume 9: Necrosis and Inflammation in Human Diseases. Emphasizes the role of Autophagy in necrosis and inflammation, explaining in detail the molecular mechanism(s) underlying the formation of autophagosomes, including the progression of Omegasomes to autophagosomes.
This second edition expands on the first edition with new chapters describing methods for studying cell movement, molecular components involved in chemotaxis, spatiotemporal dynamics of signaling components, and quantitative modeling, as well as several updated chapters from the first edition. Various methods to investigate directional cell growth and movements are presented in Chapters 1-20. These chapters contains experimental procedures to visualize and measure migration behaviors of different kinds of organisms, including chemotropism in the budding yeast; cell growth and migration of D. discoideum; border cell migration in Drosophila; chemotaxis of mouse and human neutrophils; and HIV-induced T cell chemotactic response. Chemotaxis: Methods and Protocols, Second Edition also contains microscopy procedures for studying breast cancer cell migration, tumor cell invasion in vivo, and axon guidance. The book concludes with Chapters 21-27 describing methods that measure spatiotemporal dynamics of signaling components involved in chemotaxis; introduce imaging techniques, such as TRIF, BRET, FRET, and single-molecule microscopy; and mathematical models of experimentally generated chemoattractant gradients. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, Chemotaxis: Methods and Protocols, Second Edition is a valuable resource for anyone who is interested in the diverse methodologies that are propelling chemotaxis research forward.
Regulated Cell Death Part A & Part B of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in apoptosis focusing on the important areas of intrinsic pathway, extrinsic pathway, caspases, cellular assays and post-apoptotic effects and model organisms; as well as topics on necroptosis and screening approaches.
Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.
This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.
This new volume, number 123, of "Methods in Cell Biology" looks at methods for quantitative imaging in cell biology. It covers both theoretical and practical aspects of using optical fluorescence microscopy and image analysis techniques for quantitative applications. The introductory chapters cover fundamental concepts and
techniques important for obtaining accurate and precise
quantitative data from imaging systems. These chapters address how
choice of microscope, fluorophores, and digital detector impact the
quality of quantitative data, and include step-by-step protocols
for capturing and analyzing quantitative images. Common
quantitative applications, including co-localization, ratiometric
imaging, and counting molecules, are covered in detail. Practical
chapters cover topics critical to getting the most out of your
imaging system, from microscope maintenance to creating
standardized samples for measuring resolution. Later chapters cover
recent advances in quantitative imaging techniques, including
super-resolution and light sheet microscopy. With cutting-edge
material, this comprehensive collection is intended to guide
researchers for years to come.
"International Review of Celland Molecular Biology" presents comprehensive reviews and current advances in cell and molecular biology. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. The series has a world-wide readership, maintaining a high
standard by publishing invited articles on important and timely
topics authored by prominent cell and molecular biologists. Impact
factor for 2012: 4.973.
Advances in Applied Microbiology, Volume 119 continues the comprehensive reach of this widely read and authoritative review source in microbiology. Users will find invaluable references and information on a variety of areas relating to the topics of microbiology.
This book is designed to popularize Quinoa cereal among both scientific and food industry. Quinoa is an attractive candidate for protein replacement, has potential for futuristic biotechnological modifications, and is able to grow under many different abiotic stresses. To save the world from animal cruelty, quinoa emerges as a hero for vegans and vegetarians. This book deals with morphological features, life cycle, nutritional qualities, genetics, agronomic manipulations, ecological communications, stress tolerance mechanisms, and food applications of Chenopodium quinoa. Quinoa is a pseudo-cereal native to Andes Region in South America. Over time, it spread to many different regions worldwide and is emerging as protein-rich vegetarian food source. In order to cure malnutrition globally, it is important to channel this lesser-known grain to local cultivators. This can only be done through well-proven scientific data that supports its qualities. This book aims to do the same, while also giving an insight into the vast scope quinoa posses as an experimental crop. Its stress-tolerant abilities can inspire scientists to understand those mechanisms, further exploit them, and even introduce them into other stress-sensitive crops. In future, quinoa can be among the top sources that offer food security. Due to its adaptability, ease of cultivation, and rich output, sustainability can be achieved by regulating its breeding and growth. This book is of interest to researchers, teachers, agronomic cultivators, environmentalists, botanists, microbiologists, geneticists and food technologists. This book covers recent advances, challenges in cultivation, biology, nutrition, and agricultural science topics, suitable for both young learners and advanced scientists. Cultivators who want to know more about quinoa and introduce it into their agronomic applications will find helpful information from the text.
This book is the second volume in a series of 4 volumes in the Handbook of Zoology series treating morphology, anatomy, reproduction, development, ecology, phylogeny, systematics and taxonomy of polychaetous Annelida. In this volume a comprehensive review of a few more derived higher taxa within Sedentaria are given, namely Sabellida, Opheliida/Capitellida as well as Hrabeiellidae. The former comprise annelids possessing a body divided into two more or less distinct regions or tagmata called thorax and abdomen. Here two groups of families are united, the spioniform and sabelliform polychaetes. Especially Spionidae and Sabellidae are speciose families within this group and represent two of the largest annelid families. These animals live in various types of burrows or tubes and all possess so-called feeding palps. In one group these appendages are differentiated as grooved feeding palps, whereas in the other they may form highly elaborated circular tentacular crowns comprising a number of radioles mostly giving off numerous filamentous pinnulae. Often additionally colourful, the latter are also received the common names "feather-duster worms", "flowers of the sea", "Christmas-tree worms". Opheliida/Capitellida including five families of truly worm-like annelids without appendages represents the contrary. Their members burrow in soft bottom substrates and may be classified as non-selective deposit feeders. Molecular phylogenetic analyses have shown that Echiura or spoon worms, formerly regarded to represent a separate phylum, are members of this group. Last not least Hrabeiellidae is one out of only two families of oligochaete-like terrestrial polychaetes and for this reason received strong scientific interest. |
![]() ![]() You may like...
Complex Networks and Their Applications…
Hocine Cherifi, Sabrina Gaito, …
Hardcover
R5,829
Discovery Miles 58 290
Handbook of Research on Applied…
Snehanshu Saha, Abhyuday Mandal, …
Hardcover
R6,714
Discovery Miles 67 140
Cybersecurity Issues and Challenges for…
Saqib Saeed, Abdullah M. Almuhaideb, …
Hardcover
R8,410
Discovery Miles 84 100
Safety and Security Engineering VIII
M Guarascio, G. Passerini, …
Hardcover
R2,292
Discovery Miles 22 920
|