![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building
Strengthening of Concrete Structures Using Fiber Reinforced Polymers (FRP): Design, Construction and Practical Applications presents a best practice guide on the structural design and strengthening of bridge structures using advanced Fiber Reinforced Polymer (FRP) composites. The book briefly covers the basic concepts of FRP materials and composite mechanics, while focusing on practical design and construction issues, including inspection and quality control, paying special attention to the differences in various design codes (US, Japan, and Europe) and recommendations. At present, several design guides from the US, Japan, and Europe are available. These guidelines are often inconsistent and do not cover all necessary design and inspection issues to the same degree of detail. This book provides a critical review and comparison of these guidelines, and then puts forward best practice recommendations, filling a significant gap in the literature, and serving as an important resource for engineers, architects, academics, and students interested in FRP materials and their structural applications. Written from a practitioner's point-of-view, it is a valuable design book for structural engineers all over the world.
Authoritative, well established, comprehensive, practical, and highly illustrated guide to construction practice Since 1958, Barry's Construction of Buildings has served as a standard guide to building practices and construction skills. The first volume of this now two-volume format, Barry's Introduction to Construction of Buildings provides the basic material an undergraduate student will need to understand how the majority of low-rise buildings are constructed. The text explains construction technology through key functional and performance requirements for the main elements common to all buildings. The material in the Fifth Edition has been updated to ensure it covers the latest building regulations and current construction technology, with particular attention paid to the decisions required on what and how to build to achieve a low carbon, resilient built environment. Design, technology, site assembly, and environmental issues are all covered, showing how buildings that are more efficient, with lower embodied carbon, are constructed. New 'in chapter' questions better facilitate self-reflection and learning. Barry's Introduction to Construction of Buildings contains information on: General principles of construction, regulations and approvals, making choices and sources of information, and responding to climate change Site analysis, setup, security, bedrock and soil types, ground stability, drainage, strip, pad, and raft foundations and scaffolding Functional requirements for floors, including ground-supported concrete floor slabs, timber upper floors, floor finishes, and suspended timber ground floors Pitched roofs and their coverings, sheet metal covering to low-pitched roofs, flat roofs, thermal insulation in flat roofs, parapet walls, and green roofs Barry's Introduction to Construction of Buildings is an ideal learning resource for undergraduate students and those working towards similar NQF level 5 and 6 qualifications in building and construction. This title is a companion to Barry's Advanced Construction of Buildings, Fifth Edition.
The Silk Road of the 21st Century, announced by Chinese President Xi Jinping in 2013, will certainly change the world. It will definitely stimulate economic growth and prosperity in China, the rest of Asia and elsewhere. But how can we prevent the environmental damage and the increasing inequality on a planetary scale brought about by the construction of this "road" - or in reality: a network of highways, railways, sea routes and other connections? This book deals with the question for the Maritime branch of the new Silk Road and discusses relevant strategies and technologies for sustainable and responsible port innovation and development. The backbone of the study is formed by a number of case studies of port projects in and outside of China. Some chapters focus on best practices, while others discuss new academic viewpoints, but in all cases, suggestions for improvement are given. Based on the idea that a large investment agenda also creates moral responsibility, the Chinese cases also serve to ascertain whether and to what extent they can serve as an example for projects elsewhere. A few introductory and thematic chapters and the conclusion give steering and sense to the rest of the book. Ultimately, this title gives a first and coherent analysis and assessment of a project that is unparalleled in the world and that constitutes an important determining factor for our future.
The "Intelligent Systems Series" encompasses theoretical studies, design methods, and real-world implementations and applications. It publishes titles in three core sub-topic areas: Intelligent Automation, Intelligent Transportation Systems, and Intelligent Computing. This volume, "Intelligent Vibration Control in Civil Engineering
Structures," focuses on design and property tests on different
intelligent control devices, some innovative control strategies and
analysis examples for structures with intelligent control devices,
and design and tests on intelligent controllers.
Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.
Advanced High Strength Natural Fibre Composites in Construction provides the basic framework and knowledge required for the efficient and sustainable use of natural fiber composites as a structural and building material, along with information on the ongoing efforts to improve the efficiency of use and competitiveness of these composites. Areas of particular interest include understanding the nature and behavior of raw materials and their functional contributions to the advanced architectures of high strength composites (Part 1), discussing both traditional and novel manufacturing technologies for various advanced natural fiber construction materials (Part 2), examining the parameters and performance of the composites (Part 3), and finally commenting on the associated codes, standards, and sustainable development of advanced high strength natural fiber composites for construction. This exposition will be based on well understood environmental science as it applies to construction (Part 4). The book is aimed at academics, research scholars, and engineers, and will serve as a most valuable text or reference book that challenges undergraduate and postgraduate students to think beyond standard practices when designing and creating novel construction materials.
Structural Behavior of Asphalt Pavements provides engineers and researchers with a detailed guide to the structural behavioral dynamics of asphalt pavement including: pavement temperature distribution, mechanistic response of pavement structure under the application of heavy vehicles, distress mechanism of pavement, and pavement deterioration performance and dynamic equations. An authoritative guide for understanding the key mechanisms for creating longer lasting pavements, Structural Behavior of Asphalt Pavements describes the intrinsic consistency between macroscopic performance and microscopic response, structure and material, as well as global and local performances, and demonstrates the process of pavement analyses and designs, approaching science from empirical analyses.
Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton's Q and Q' systems, Bieniawski's RMR, Laubscher's MRMR and Hoek's and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design.
Written from the perspective of industrial users, this is the only book that describes how to install an effective firewater pumping system in a pragmatic and budget-conscious way rather than with purely the regulatory framework in mind. Based on the wide-ranging industrial experience of the author, this book is also the only one that deals with the particular risks and requirements of off-shore facilities. This book takes the reader beyond the prescriptive requirements of the fire code (NFPA, UL) and considers how to make the best choice of design for the budget available as well as how to ensure the other components of the pumping system and supporting services are optimized.
Adhesive bonding is often effective, efficient, and often necessary way to join mechanical structures. This important book reviews the most recent improvements in adhesive bonding and their wide-ranging potential in structural engineering. Part one reviews advances in the most commonly used groups of structural adhesives with chapters covering topics such as epoxy, polyurethane, silicone, cyanoacrylate, and acrylic adhesives. The second set of chapters covers the various types of adherends and pre-treatment methods for a range of structural materials such as metals, composites and plastics. Chapters in Part three analyse methods and techniques with topics on joint design, life prediction, fracture mechanics and testing. The final group of chapters gives useful and practical insights into the problems and solutions of adhesive bonding in a variety of hostile environments such as chemical, wet and extreme temperatures. With its distinguished editor and international team of contributors, Advances in structural adhesive bonding is a standard reference for structural and chemical engineers in industry and the academic sector.
Many concrete structures and elements of concrete infrastructure have exceeded their original design lives and are deteriorating to an extent where they are becoming dangerous. The deterioration can be internal or not obvious and therefore only shows up with detailed testing. Non-destructive evaluation of reinforced concrete structures, Volume 1: Deterioration processes and standard test methods reviews the processes of deterioration and classical and standard test methods. Part one discusses deterioration of reinforced concrete and testing problems with chapters on topics such as key issues in the non-destructive testing of concrete structures, when to use non-destructive testing of reinforced concrete structures, deterioration processes in reinforced concrete, modelling ageing and corrosion processes in reinforced concrete structures, components in concrete and their impact on quality, and predicting the service life of reinforced concrete structures. Part two reviews classical and standard testing methods including microscopic examination of deteriorated concrete, the analysis of solid components and their ratios in reinforced concrete structures, the determination of chlorides in concrete structures, and investigating the original water content of reinforced concrete structures. With its distinguished editors and international team of contributors, Non-destructive evaluation of reinforced concrete structures, Volume 1: Deterioration processes and standard test methods will be a standard reference for civil and structural engineers as well as those concerned with making decisions regarding the safety of reinforced concrete structures.
Service life estimation is an area of growing importance in civil engineering both for determining the remaining service life of civil engineering structures and for designing new structural systems with well-defined periods of functionality. Service life estimation and extension of civil engineering structures provides valuable information on the development and use of newer and more durable materials and methods of construction, as well as the development and use of new techniques of estimating service life. Part one discusses using fibre reinforced polymer (FRP) composites to extend the service-life of civil engineering structures. It considers the key issues in the use of FRP composites, examines the possibility of extending the service life of structurally deficient and deteriorating concrete structures and investigates the uncertainties of using FRP composites in the rehabilitation of civil engineering structures. Part two discusses estimating the service life of civil engineering structures including modelling service life and maintenance strategies and probabilistic methods for service life estimation. It goes on to investigate non-destructive evaluation and testing (NDE/NDT) as well as databases and knowledge-based systems for service life estimation of rehabilitated civil structures and pipelines. With its distinguished editors and international team of contributors Service life estimation and extension of civil engineering structures is an invaluable resource to academics, civil engineers, construction companies, infrastructure providers and all those with an interest in improving the service life, safety and reliability of civil engineering structures.
From long-standing worries regarding the use of lead and asbestos to recent research into carcinogenic issues related to the use of plastics in construction, there is growing concern regarding the potential toxic effects of building materials on health. Toxicity of building materials provides an essential guide to this important problem and its solutions. Beginning with an overview of the material types and potential health hazards presented by building materials, the book goes on to consider key plastic materials. Materials responsible for formaldehyde and volatile organic compound emissions, as well as semi-volatile organic compounds, are then explored in depth, before a review of wood preservatives and mineral fibre-based building materials. Issues related to the use of radioactive materials and materials that release toxic fumes during burning are the focus of subsequent chapters, followed by discussion of the range of heavy metals, materials prone to mould growth, and antimicrobials. Finally, Toxicity of building materials concludes by considering the potential hazards posed by waste based/recycled building materials, and the toxicity of nanoparticles. With its distinguished editors and international team of expert contributors, Toxicity of building materials is an invaluable tool for all civil engineers, materials researchers, scientists and educators working in the field of building materials.
Aircraft maintenance, repair and overhaul (MRO) requires unique information technology to meet the challenges set by today's aviation industry. How do IT services relate to aircraft MRO, and how may IT be leveraged in the future? Leveraging Information Technology for Optimal Aircraft Maintenance, Repair and Overhaul (MRO) responds to these questions, and describes the background of current trends in the industry, where airlines are tending to retain aircraft longer on the one hand, and rapidly introducing new genres of aircraft such as the A380 and B787, on the other. This book provides industry professionals and students of aviation MRO with the necessary principles, approaches and tools to respond effectively and efficiently to the constant development of new technologies, both in general and within the aviation MRO profession. This book is designed as a primer on IT services for aircraft engineering professionals and a handbook for IT professionals servicing this niche industry, highlighting the unique information requirements for aviation MRO and delving into detailed aspects of information needs from within the industry.
Estimating, modelling, controlling and monitoring the flow of concrete is a vital part of the construction process, as the properties of concrete before it has set can have a significant impact on performance. This book provides a detailed overview of the rheological behaviour of concrete, including measurement techniques, the impact of mix design, and casting. Part one begins with two introductory chapters dealing with the rheology and rheometry of complex fluids, followed by chapters that examine specific measurement and testing techniques for concrete. The focus of part two is the impact of mix design on the rheological behaviour of concrete, looking at additives including superplasticizers and viscosity agents. Finally, chapters in part three cover topics related to casting, such as thixotropy and formwork pressure. With its distinguished editor and expert team of contributors, Understanding the rheology of concrete is an essential reference for researchers, materials specifiers, architects and designers in any section of the construction industry that makes use of concrete, and will also benefit graduate and undergraduate students of civil engineering, materials and construction.
The construction of buildings and structures relies on having a thorough understanding of building materials. Without this knowledge it would not be possible to build safe, efficient and long-lasting buildings, structures and dwellings. Building materials in civil engineering provides an overview of the complete range of building materials available to civil engineers and all those involved in the building and construction industries. The book begins with an introductory chapter describing the basic properties of building materials. Further chapters cover the basic properties of building materials, air hardening cement materials, cement, concrete, building mortar, wall and roof materials, construction steel, wood, waterproof materials, building plastics, heat-insulating materials and sound-absorbing materials and finishing materials. Each chapter includes a series of questions, allowing readers to test the knowledge they have gained. A detailed appendix gives information on the testing of building materials. With its distinguished editor and eminent editorial committee, Building materials in civil engineering is a standard introductory reference book on the complete range of building materials. It is aimed at students of civil engineering, construction engineering and allied courses including water supply and drainage engineering. It also serves as a source of essential background information for engineers and professionals in the civil engineering and construction sector.
The choice of structural design and material is essential in preventing the external walls of a vessel from buckling under pressure. In this revised second edition of Pressure vessels, Carl Ross reviews the problem and uses both theoretical and practical examples to show how it can be solved for different structures. The second edition opens with an overview of the types of vessels under external pressure and materials used for construction. Axisymmetric deformation and different types of instability are discussed in the following chapters, with chapters 5 and 6 covering vibration of pressure vessel shells, both in water and out. Chapters 7 and 8 focus on novel pressure hulls, covering design, vibration and collapse, while chapters 9 and 10 concentrate on the design and non-linear analysis of submarine pressure hulls under external hydrostatic pressure. In chapter 11, the design, structure and materials of deep-diving underwater pressure vessels are discussed, focusing on their application in missile defence systems. Finally, chapter 12 analyses the vibration of a thin-walled shell under external water pressure, using ANSYS technology. Drawing on the author's extensive experience in engineering and design both in an industrial and academic capacity, the second edition of Pressure vessels is an essential reference for stress analysts, designers, consultants and manufacturers of pressure vessels, as well as all those with an academic research interest in the area. |
![]() ![]() You may like...
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R4,223
Discovery Miles 42 230
Targeting Chronic Inflammatory Lung…
Kamal Dua, Philip M. Hansbro, …
Paperback
R4,285
Discovery Miles 42 850
Conversations With A Gentle Soul
Ahmed Kathrada, Sahm Venter
Paperback
![]()
|