Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation.
This is the first book that focuses entirely on the fundamental questions in visualization. Unlike other existing books in the field, it contains discussions that go far beyond individual visual representations and individual visualization algorithms. It offers a collection of investigative discourses that probe these questions from different perspectives, including concepts that help frame these questions and their potential answers, mathematical methods that underpin the scientific reasoning of these questions, empirical methods that facilitate the validation and falsification of potential answers, and case studies that stimulate hypotheses about potential answers while providing practical evidence for such hypotheses. Readers are not instructed to follow a specific theory, but their attention is brought to a broad range of schools of thoughts and different ways of investigating fundamental questions. As such, the book represents the by now most significant collective effort for gathering a large collection of discourses on the foundation of data visualization. Data visualization is a relatively young scientific discipline. Over the last three decades, a large collection of computer-supported visualization techniques have been developed, and the merits and benefits of using these techniques have been evidenced by numerous applications in practice. These technical advancements have given rise to the scientific curiosity about some fundamental questions such as why and how visualization works, when it is useful or effective and when it is not, what are the primary factors affecting its usefulness and effectiveness, and so on. This book signifies timely and exciting opportunities to answer such fundamental questions by building on the wealth of knowledge and experience accumulated in developing and deploying visualization technology in practice.
Multilayer networks is a rising topic in Network Science which characterizes the structure and the function of complex systems formed by several interacting networks. Multilayer networks research has been propelled forward by the wide realm of applications in social, biological and infrastructure networks and the large availability of network data, as well as by the significance of recent results, which have produced important advances in this rapidly growing field. This book presents a comprehensive account of this emerging field. It provides a theoretical introduction to the main results of multilayer network science.
Analytic Combinatorics: A Multidimensional Approach is written in a reader-friendly fashion to better facilitate the understanding of the subject. Naturally, it is a firm introduction to the concept of analytic combinatorics and is a valuable tool to help readers better understand the structure and large-scale behavior of discrete objects. Primarily, the textbook is a gateway to the interactions between complex analysis and combinatorics. The study will lead readers through connections to number theory, algebraic geometry, probability and formal language theory. The textbook starts by discussing objects that can be enumerated using generating functions, such as tree classes and lattice walks. It also introduces multivariate generating functions including the topics of the kernel method, and diagonal constructions. The second part explains methods of counting these objects, which involves deep mathematics coming from outside combinatorics, such as complex analysis and geometry. Features Written with combinatorics-centric exposition to illustrate advanced analytic techniques Each chapter includes problems, exercises, and reviews of the material discussed in them Includes a comprehensive glossary, as well as lists of figures and symbols About the author Marni Mishna is a professor of mathematics at Simon Fraser University in British Columbia. Her research investigates interactions between discrete structures and many diverse areas such as representation theory, functional equation theory, and algebraic geometry. Her specialty is the development of analytic tools to study the large-scale behavior of discrete objects.
This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs. The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas. This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief.
Quality measurement, control, and improvement in combinatorial
chemistry
A unified, modern treatment of the theory of random graphs-including recent results and techniques
Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets.
The last fifteen years have seen a flurry of exciting developments in Fourier restriction theory, leading to significant new applications in diverse fields. This timely text brings the reader from the classical results to state-of-the-art advances in multilinear restriction theory, the Bourgain-Guth induction on scales and the polynomial method. Also discussed in the second part are decoupling for curved manifolds and a wide variety of applications in geometric analysis, PDEs (Strichartz estimates on tori, local smoothing for the wave equation) and number theory (exponential sum estimates and the proof of the Main Conjecture for Vinogradov's Mean Value Theorem). More than 100 exercises in the text help reinforce these important but often difficult ideas, making it suitable for graduate students as well as specialists. Written by an author at the forefront of the modern theory, this book will be of interest to everybody working in harmonic analysis.
Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems. The book offers a state-of-the-art overview of the latest research, tool development, and applications. It focuses on load balancing and parallelization on high-performance computers, large-scale optimization, algorithmic differentiation of numerical simulation code, sparse matrix software tools, and combinatorial challenges and applications in large-scale social networks. The authors unify these seemingly disparate areas through a common set of abstractions and algorithms based on combinatorics, graphs, and hypergraphs. Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations and their importance continues to grow with the demands of new applications and advanced architectures. By addressing current challenges in the field, this volume sets the stage for the accelerated development and deployment of fundamental enabling technologies in high-performance scientific computing.
This book provides users with cutting edge methods and technologies in the area of big data and visual analytics, as well as an insight to the big data and data analytics research conducted by world-renowned researchers in this field. The authors present comprehensive educational resources on big data and visual analytics covering state-of-the art techniques on data analytics, data and information visualization, and visual analytics. Each chapter covers specific topics related to big data and data analytics as virtual data machine, security of big data, big data applications, high performance computing cluster, and big data implementation techniques. Every chapter includes a description of an unique contribution to the area of big data and visual analytics. This book is a valuable resource for researchers and professionals working in the area of big data, data analytics, and information visualization. Advanced-level students studying computer science will also find this book helpful as a secondary textbook or reference.
RC4 Stream Cipher and Its Variants is the first book to fully cover the popular software stream cipher RC4. With extensive expertise in stream cipher cryptanalysis and RC4 research, the authors focus on the analysis and design issues of RC4. They also explore variants of RC4 and the eSTREAM finalist HC-128. After an introduction to the vast field of cryptology, the book reviews hardware and software stream ciphers and describes RC4. It presents a theoretical analysis of RC4 KSA, discussing biases of the permutation bytes toward secret key bytes and absolute values. The text explains how to reconstruct the secret key from known state information and analyzes the RC4 PRGA in detail, including a sketch of state recovery attacks. The book then describes three popular attacks on RC4: distinguishing attacks, Wired Equivalent Privacy (WEP) protocol attacks, and fault attacks. The authors also compare the advantages and disadvantages of several variants of RC4 and examine stream cipher HC-128, which is the next level of evolution after RC4 in the software stream cipher paradigm. The final chapter emphasizes the safe use of RC4. With open research problems in each chapter, this book offers a complete account of the most current research on RC4.
A mathematical gem–freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course. Features retained from the first edition:
Highlights of Second Edition enhancements:
Finite Geometries stands out from recent textbooks about the subject of finite geometries by having a broader scope. The authors thoroughly explain how the subject of finite geometries is a central part of discrete mathematics. The text is suitable for undergraduate and graduate courses. Additionally, it can be used as reference material on recent works. The authors examine how finite geometries' applicable nature led to solutions of open problems in different fields, such as design theory, cryptography and extremal combinatorics. Other areas covered include proof techniques using polynomials in case of Desarguesian planes, and applications in extremal combinatorics, plus, recent material and developments. Features: Includes exercise sets for possible use in a graduate course Discusses applications to graph theory and extremal combinatorics Covers coding theory and cryptography Translated and revised text from the Hungarian published version
This book and app is for practitioners, professionals, researchers, and students who want to learn how to make a plot within the R environment using ggplot2, step-by-step without coding. In widespread use in the statistical communities, R is a free software language and environment for statistical programming and graphics. Many users find R to have a steep learning curve but to be extremely useful once overcome. ggplot2 is an extremely popular package tailored for producing graphics within R but which requires coding and has a steep learning curve itself, and Shiny is an open source R package that provides a web framework for building web applications using R without requiring HTML, CSS, or JavaScript. This manual-"integrating" R, ggplot2, and Shiny-introduces a new Shiny app, Learn ggplot2, that allows users to make plots easily without coding. With the Learn ggplot2 Shiny app, users can make plots using ggplot2 without having to code each step, reducing typos and error messages and allowing users to become familiar with ggplot2 code. The app makes it easy to apply themes, make multiplots (combining several plots into one plot), and download plots as PNG, PDF, or PowerPoint files with editable vector graphics. Users can also make plots on any computer or smart phone. Learn ggplot2 Using Shiny App allows users to Make publication-ready plots in minutes without coding Download plots with desired width, height, and resolution Plot and download plots in png, pdf, and PowerPoint formats, with or without R code and with editable vector graphics
This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matematica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanovic delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Angeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.
Boolean functions are essential to systems for secure and reliable communication. This comprehensive survey of Boolean functions for cryptography and coding covers the whole domain and all important results, building on the author's influential articles with additional topics and recent results. A useful resource for researchers and graduate students, the book balances detailed discussions of properties and parameters with examples of various types of cryptographic attacks that motivate the consideration of these parameters. It provides all the necessary background on mathematics, cryptography, and coding, and an overview on recent applications, such as side channel attacks on smart cards, cloud computing through fully homomorphic encryption, and local pseudo-random generators. The result is a complete and accessible text on the state of the art in single and multiple output Boolean functions that illustrates the interaction between mathematics, computer science, and telecommunications.
Includes proof of van der Waerden's 1926 conjecture on permanents, Wilson's theorem on asymptotic existence, and other developments in combinatorics since 1967. Also covers coding theory and its important connection with designs, problems of enumeration, and partition. Presents fundamentals in addition to latest advances, with illustrative problems at the end of each chapter. Enlarged appendixes include a longer list of block designs.
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida's Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.
This book, written by experts from universities and major research laboratories, addresses the hot topic of network coding, a powerful scheme for information transmission in networks that yields near-optimal throughput. It introduces readers to this striking new approach to network coding, in which the network is not simply viewed as a mechanism for delivering packets, but rather an algebraic structure named the subspace, which these packets span. This leads to a new kind of coding theory, employing what are called subspace codes. The book presents selected, highly relevant advanced research output on: Subspace Codes and Rank Metric Codes; Finite Geometries and Subspace Designs; Application of Network Coding; Codes for Distributed Storage Systems. The outcomes reflect research conducted within the framework of the European COST Action IC1104: Random Network Coding and Designs over GF(q). Taken together, they offer communications engineers, R&D engineers, researchers and graduate students in Mathematics, Computer Science, and Electrical Engineering a comprehensive reference guide to the construction of optimal network codes, as well as efficient encoding and decoding schemes for a given network code.
Multilayer networks is a rising topic in Network Science which characterizes the structure and the function of complex systems formed by several interacting networks. Multilayer networks research has been propelled forward by the wide realm of applications in social, biological and infrastructure networks and the large availability of network data, as well as by the significance of recent results, which have produced important advances in this rapidly growing field. This book presents a comprehensive account of this emerging field. It provides a theoretical introduction to the main results of multilayer network science.
As the first book of a three-part series, this book is offered as a tribute to pioneers in vision, such as Bela Julesz, David Marr, King-Sun Fu, Ulf Grenander, and David Mumford. The authors hope to provide foundation and, perhaps more importantly, further inspiration for continued research in vision. This book covers David Marr's paradigm and various underlying statistical models for vision. The mathematical framework herein integrates three regimes of models (low-, mid-, and high-entropy regimes) and provides foundation for research in visual coding, recognition, and cognition. Concepts are first explained for understanding and then supported by findings in psychology and neuroscience, after which they are established by statistical models and associated learning and inference algorithms. A reader will gain a unified, cross-disciplinary view of research in vision and will accrue knowledge spanning from psychology to neuroscience to statistics.
|
You may like...
|