![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course. After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation expressions, binomial coefficients, partitions and permutations, and integer methods. The author then focuses on graph theory, covering topics such as trees, isomorphism, automorphism, planarity, coloring, and network flows. The final chapters discuss automorphism groups in algebraic counting methods and describe combinatorial designs, including Latin squares, block designs, projective planes, and affine planes. In addition, the appendix supplies background material on relations, functions, algebraic systems, finite fields, and vector spaces. Paving the way for students to understand and perform combinatorial calculations, this accessible text presents the discrete methods necessary for applications to algorithmic analysis, performance evaluation, and statistics as well as for the solution of combinatorial problems in engineering and the social sciences.
This book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague's astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that combines tools and concepts of linear algebra and combinatorics, with applications ranging from image processing and data analysis to molecular descriptors and random walks. It has attracted a lot of attention and has since emerged as an area on its own. Studies in spectral graph theory seek to determine properties of a graph through matrices associated with it. It turns out that eigenvalues and eigenvectors have surprisingly many connections with the structure of a graph. This book approaches this subject under the perspective of eigenvalue location algorithms. These are algorithms that, given a symmetric graph matrix M and a real interval I, return the number of eigenvalues of M that lie in I. Since the algorithms described here are typically very fast, they allow one to quickly approximate the value of any eigenvalue, which is a basic step in most applications of spectral graph theory. Moreover, these algorithms are convenient theoretical tools for proving bounds on eigenvalues and their multiplicities, which was quite useful to solve longstanding open problems in the area. This book brings these algorithms together, revealing how similar they are in spirit, and presents some of their main applications. This work can be of special interest to graduate students and researchers in spectral graph theory, and to any mathematician who wishes to know more about eigenvalues associated with graphs. It can also serve as a compact textbook for short courses on the topic.
This textbook offers an accessible introduction to combinatorics, infused with Solomon Golomb's insights and illustrative examples. Core concepts in combinatorics are presented with an engaging narrative that suits undergraduate study at any level. Featuring early coverage of the Principle of Inclusion-Exclusion and a unified treatment of permutations later on, the structure emphasizes the cohesive development of ideas. Combined with the conversational style, this approach is especially well suited to independent study. Falling naturally into three parts, the book begins with a flexible Chapter Zero that can be used to cover essential background topics, or as a standalone problem-solving course. The following three chapters cover core topics in combinatorics, such as combinations, generating functions, and permutations. The final three chapters present additional topics, such as Fibonacci numbers, finite groups, and combinatorial structures. Numerous illuminating examples are included throughout, along with exercises of all levels. Three appendices include additional exercises, examples, and solutions to a selection of problems. Solomon Golomb's Course on Undergraduate Combinatorics is ideal for introducing mathematics students to combinatorics at any stage in their program. There are no formal prerequisites, but readers will benefit from mathematical curiosity and a willingness to engage in the book's many entertaining challenges.
This book focuses on the application of virtual reality (VR) technology in mining machinery. It gives a detailed introduction to the application of VR technology in virtual assembly, virtual planning, and virtual monitoring. Based on the theory of digital twin, VR technology and collaborative control technology are applied to coal mining machinery equipment, which lays a foundation for the digitalization and intellectualization of coal machinery equipment and broadens the application scope of virtual reality technology in the mechanical engineering field. Through the application of VR technology in coal machinery equipment, this book provides new methods and ideas for teaching activities, scientific research activities, and actual production with rich illustrations, related table introduction, unique research ideas, and other unique contents. This book could be a useful reference for researchers in mining machinery, simulation and modeling, computer-aided engineering (CAD and CAE) and design, visualization, mechanical engineering, and other disciplines.
The Workshop for Women in Graph Theory and Applications was held at the Institute for Mathematics and Its Applications (University of Minnesota, Minneapolis) on August 19-23, 2019. During this five-day workshop, 42 participants performed collaborative research, in six teams, each focused on open problems in different areas of graph theory and its applications. The research work of each team was led by two experts in the corresponding area, who prior to the workshop, carefully selected relevant and meaningful open problems that would yield high-quality research and results of strong impact. As a result, all six teams have made significant contributions to several open problems in their respective areas. The workshop led to the creation of the Women in Graph Theory and Applications Research Collaboration Network, which provided the framework to continue collaborating and to produce this volume. This book contains six chapters, each of them on one of the different areas of research at the Workshop for Women in Graph Theory and Applications, and written by participants of each team.
This book is an invaluable resource for graph theorists and researchers in related areas, and is the first of its kind. It provides a comprehensive catalogue of over 10,000 graphs, with accompanying tables of parameters and properties.
This book highlights new and original contributions on Graph Theory and Combinatorial Optimization both from the theoretical point of view and from applications in all fields. The book chapters describe models and methods based on graphs, structural properties, discrete optimization, network optimization, mixed-integer programming, heuristics, meta-heuristics, math-heuristics, and exact methods as well as applications. The book collects selected contributions from the CTW2020 international conference (18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization), held online on September 14-16, 2020. The conference was organized by IASI-CNR with the contribution of University of Roma Tre, University Roma Tor Vergata, and CNRS-LIX and with the support of AIRO. It is addressed to researchers, PhD students, and practitioners in the fields of Graph Theory, Discrete Mathematics, Combinatorial Optimization, and Operations Research.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
The long-awaited second edition of Norman Bigg's best-selling Discrete Mathematics, includes new chapters on statements and proof, logical framework, natural numbers, and the integers, in addition to updated chapters from the previous edition. Carefully structured, coherent and comprehensive, each chapter contains tailored exercises and solutions to selected questions, and miscellaneous exercises are presented throughout. This is an invaluable text for students seeking a clear introduction to discrete mathematics, graph theory, combinatorics, number theory and abstract algebra.
The inverse scattering problem is central to many areas of science and technology such as radar, sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this fourth edition, a number of significant additions have been made including a new chapter on transmission eigenvalues and a new section on the impedance boundary condition where particular attention has been made to the generalized impedance boundary condition and to nonlocal impedance boundary conditions. Brief discussions on the generalized linear sampling method, the method of recursive linearization, anisotropic media and the use of target signatures in inverse scattering theory have also been added.
This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry, and listing many open problems. It unifies these mathematical and computational views using forbidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of figures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathematics including number theory, graph theory, and the theory of permutation patterns. Pseudocode is included for many algorithms that compute properties of point sets.
Scientific visualization has always been an integral part of discovery, starting first with simplified drawings of the pre-Enlightenment and progressing to present day. Mathematical formalism often supersedes visual methods, but their use is at the core of the mental process. As historical examples, a spatial description of flow led to electromagnetic theory, and without visualization of crystals, structural chemistry would not exist. With the advent of computer graphics technology, visualization has become a driving force in modern computing. A Concise Introduction to Scientific Visualization - Past, Present, and Future serves as a primer to visualization without assuming prior knowledge. It discusses both the history of visualization in scientific endeavour, and how scientific visualization is currently shaping the progress of science as a multi-disciplinary domain.
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
Use the Pharo interactive development environment to significantly reduce the cost of creating interactive visualizations. This book shows how Pharo leverages visualization development against traditional frameworks and toolkits. Agile Visualization with Pharo focuses on the Roassal visualization engine and first presents the basic and necessary tools to visualize data, including an introduction to the Pharo programming language. Once you've grasped the basics, you'll learn all about the development environment offered by Roassal. The book provides numerous ready-to-use examples. You'll work on several applications, including visualizing the training phase of reinforcement learning (a powerful machine learning algorithm) and generating software visualizations from GitHub. This book covers aspects that are relevant for engineers and academics to successfully design and implement interactive visualizations. What You Will Learn Implement agile data visualization using the Pharo programming language Chart, plot, and curve using Grapher Build and draw graphs using Mondrian Implement reinforcement learning (Q-Learning, from scratch) and use visualizations to monitor learning and state exploration Use GitHub Action to generate software visualizations (UML class diagram, test coverage) at each commit Who This Book Is For Programmers with some prior exposure to data visualization and computer vision who may be new to the Pharo programming language. This book is also for those with some Pharo experience looking to apply it to data visualization.
Since the early eighteenth century, the theory of networks and graphs has matured into an indispensable tool for describing countless real-world phenomena. However, the study of large-scale features of a network often requires unrealistic limits, such as taking the network size to infinity or assuming a continuum. These asymptotic and analytic approaches can significantly diverge from real or simulated networks when applied at the finite scales of real-world applications. This book offers an approach to overcoming these limitations by introducing operator graph theory, an exact, non-asymptotic set of tools combining graph theory with operator calculus. The book is intended for mathematicians, physicists, and other scientists interested in discrete finite systems and their graph-theoretical description, and in delineating the abstract algebraic structures that characterise such systems. All the necessary background on graph theory and operator calculus is included for readers to understand the potential applications of operator graph theory.
This is the first full-length book on the major theme of symmetry in graphs. Forming part of algebraic graph theory, this fast-growing field is concerned with the study of highly symmetric graphs, particularly vertex-transitive graphs, and other combinatorial structures, primarily by group-theoretic techniques. In practice the street goes both ways and these investigations shed new light on permutation groups and related algebraic structures. The book assumes a first course in graph theory and group theory but no specialized knowledge of the theory of permutation groups or vertex-transitive graphs. It begins with the basic material before introducing the field's major problems and most active research themes in order to motivate the detailed discussion of individual topics that follows. Featuring many examples and over 450 exercises, it is an essential introduction to the field for graduate students and a valuable addition to any algebraic graph theorist's bookshelf.
This book constitutes the proceedings of the 27th International Conference on Computing and Combinatorics, COCOON 2021, held in Tainan, Taiwan, in October 2021. Due to the COVID-19 pandemic, COCOON 2021 was organized as a hybrid conference. The 56 papers presented in this volume were carefully reviewed and selected from 131 submissions. The papers are divided into the following topical sub-headings: algorithms, approximation algorithms, automata, computational geometry, fault tolerant computing and fault diagnosis, graph algorithms, graph theory and applications, network and algorithms, online algorithm and stream algorithms, parameterized complexity and algorithms, and recreational games.
Impending technological advances will widen an adversary's attack plane over the next decade. Visualizing what the future will hold, and what new threat vectors could emerge, is a task that traditional planning mechanisms struggle to accomplish given the wide range of potential issues. Understanding and preparing for the future operating environment is the basis of an analytical method known as Threatcasting. It is a method that gives researchers a structured way to envision and plan for risks ten years in the future. Threatcasting uses input from social science, technical research, cultural history, economics, trends, expert interviews, and even a little science fiction to recognize future threats and design potential futures. During this human-centric process, participants brainstorm what actions can be taken to identify, track, disrupt, mitigate, and recover from the possible threats. Specifically, groups explore how to transform the future they desire into reality while avoiding an undesired future. The Threatcasting method also exposes what events could happen that indicate the progression toward an increasingly possible threat landscape. This book begins with an overview of the Threatcasting method with examples and case studies to enhance the academic foundation. Along with end-of-chapter exercises to enhance the reader's understanding of the concepts, there is also a full project where the reader can conduct a mock Threatcasting on the topic of "the next biological public health crisis." The second half of the book is designed as a practitioner's handbook. It has three separate chapters (based on the general size of the Threatcasting group) that walk the reader through how to apply the knowledge from Part I to conduct an actual Threatcasting activity. This book will be useful for a wide audience (from student to practitioner) and will hopefully promote new dialogues across communities and novel developments in the area.
When you picture human-data interactions (HDI), what comes to mind? The datafication of modern life, along with open data initiatives advocating for transparency and access to current and historical datasets, has fundamentally transformed when, where, and how people encounter data. People now rely on data to make decisions, understand current events, and interpret the world. We frequently employ graphs, maps, and other spatialized forms to aid data interpretation, yet the familiarity of these displays causes us to forget that even basic representations are complex, challenging inscriptions and are not neutral; they are based on representational choices that impact how and what they communicate. This book draws on frameworks from the learning sciences, visualization, and human-computer interaction to explore embodied HDI. This exciting sub-field of interaction design is based on the premise that every day we produce and have access to quintillions of bytes of data, the exploration and analysis of which are no longer confined within the walls of research laboratories. This volume examines how humans interact with these data in informal (not work or school) environments, paritcularly in museums. The first half of the book provides an overview of the multi-disciplinary, theoretical foundations of HDI (in particular, embodied cognition, conceptual metaphor theory, embodied interaction, and embodied learning) and reviews socio-technical theories relevant for designing HDI installations to support informal learning. The second half of the book describes strategies for engaging museum visitors with interactive data visualizations, presents methodologies that can inform the design of hand gestures and body movements for embodied installations, and discusses how HDI can facilitate people's sensemaking about data. This cross-disciplinary book is intended as a resource for students and early-career researchers in human-computer interaction and the learning sciences, as well as for more senior researchers and museum practitioners who want to quickly familiarize themselves with HDI.
Combinatorics on words, or finite sequences, is a field that grew from the disparate mathematics branches of group theory and probability. In recent times, it has gained recognition as an independent theory and has found substantial applications in computer science automata theory and linguistics. This volume is the first to present a thorough treatment of this theory and includes discussions of Thue's square free words, Van der Waerden's theorem, and Ramsey's theorem. This volume is an accessible text for undergraduate and graduate level students in mathematics and computer science as well as specialists in all branches of applied mathematics.
The purpose of this book is to inform mathematicians about the applicability of graph theory to other areas of mathematics, from number theory, to linear algebra, knots, neural networks, and finance. This is achieved through a series of expository chapters, each devoted to a different field and written by an expert in that field. This book is more than a collection of essays however, in that the chapters have been carefully edited to ensure a common level of exposition, with terminology and notation standardized as far as possible. This book will be useful to professsional mathematicians and graduate students. It should also appeal to scientists working in other areas.
This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education
This book A Guide to Graph Algorithms offers high-quality content in the research area of graph algorithms and explores the latest developments in graph algorithmics. The reader will gain a comprehensive understanding of how to use algorithms to explore graphs. It is a collection of texts that have proved to be trend setters and good examples of that. The book aims at providing the reader with a deep understanding of the structural properties of graphs that are useful for the design of efficient algorithms. These algorithms have applications in finite state machine modelling, social network theory, biology, and mathematics. The book contains many exercises, some up at present-day research-level. The exercises encourage the reader to discover new techniques by putting things in a clear perspective. A study of this book will provide the reader with many powerful tools to model and tackle problems in real-world scenarios.
This volume comprises 16 contributions that present advanced topics in graph domination, featuring open problems, modern techniques, and recent results. The focus is on primary dominating sets such as paired domination, connected domination, restrained domination, dominating functions, Roman domination, and power domination. Additionally, surveys include known results with a sample of proof techniques for each parameter. Of extra benefit to the reader, the first chapter includes a glossary of commonly used terms; the second chapter provides an overview of models of domination from which the parameters are defined. The book is intended to provide a reference for established researchers in the fields of domination and graph theory and graduate students who wish to gain knowledge of the topics covered as well as an overview of the major accomplishments in the field and proof techniques used. |
![]() ![]() You may like...
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,597
Discovery Miles 15 970
On Sets and Graphs - Perspectives on…
Eugenio G. Omodeo, Alberto Policriti, …
Hardcover
R2,039
Discovery Miles 20 390
Advanced Studies in Behaviormetrics and…
Tadashi Imaizumi, Atsuho Nakayama, …
Hardcover
R3,772
Discovery Miles 37 720
Fixed Point Theory and Graph Theory…
Monther Alfuraidan, Qamrul Ansari
Hardcover
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,372
Discovery Miles 23 720
|