![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This textbook explores probability and stochastic processes at a level that does not require any prior knowledge except basic calculus. It presents the fundamental concepts in a step-by-step manner, and offers remarks and warnings for deeper insights. The chapters include basic examples, which are revisited as the new concepts are introduced. To aid learning, figures and diagrams are used to help readers grasp the concepts, and the solutions to the exercises and problems. Further, a table format is also used where relevant for better comparison of the ideas and formulae. The first part of the book introduces readers to the essentials of probability, including combinatorial analysis, conditional probability, and discrete and continuous random variable. The second part then covers fundamental stochastic processes, including point, counting, renewal and regenerative processes, the Poisson process, Markov chains, queuing models and reliability theory. Primarily intended for undergraduate engineering students, it is also useful for graduate-level students wanting to refresh their knowledge of the basics of probability and stochastic processes.
Magic and antimagic labelings are among the oldest labeling schemes in graph theory. This book takes readers on a journey through these labelings, from early beginnings with magic squares up to the latest results and beyond. Starting from the very basics, the book offers a detailed account of all magic and antimagic type labelings of undirected graphs. Long-standing problems are surveyed and presented along with recent results in classical labelings. In addition, the book covers an assortment of variations on the labeling theme, all in one self-contained monograph. Assuming only basic familiarity with graphs, this book, complete with carefully written proofs of most results, is an ideal introduction to graph labeling for students learning the subject. More than 150 open problems and conjectures make it an invaluable guide for postgraduate and early career researchers, as well as an excellent reference for established graph theorists.
Graph-Theoretical Matrices in Chemistry presents a systematic survey of graph-theoretical matrices and highlights their potential uses. This comprehensive volume is an updated, extended version of a former bestseller featuring a series of mathematical chemistry monographs. In this edition, nearly 200 graph-theoretical matrices are included. This second edition is organized like the previous one-after an introduction, graph-theoretical matrices are presented in five chapters: The Adjacency Matrix and Related Matrices, Incidence Matrices, The Distance Matrix and Related Matrices, Special Matrices, and Graphical Matrices. Each of these chapters is followed by a list of references. Among the matrices presented several are novel and some are known only to a few. The properties and potential usefulness of many of the presented graph-theoretical matrices in chemistry have yet to be investigated. Most of the graph-theoretical matrices presented have been used as sources of molecular descriptors usually referred to as topological indices. They are particularly concerned with a special class of graphs that represents chemical structures involving molecules. Due to its multidisciplinary scope, this book will appeal to a broad audience ranging from chemistry and mathematics to pharmacology.
Written by experts in their respective fields, this collection of pedagogic surveys provides detailed insight and background into five separate areas at the forefront of modern research in orthogonal polynomials and special functions at a level suited to graduate students. A broad range of topics are introduced including exceptional orthogonal polynomials, q-series, applications of spectral theory to special functions, elliptic hypergeometric functions, and combinatorics of orthogonal polynomials. Exercises, examples and some open problems are provided. The volume is derived from lectures presented at the OPSF-S6 Summer School at the University of Maryland, and has been carefully edited to provide a coherent and consistent entry point for graduate students and newcomers.
This book explores topics in Gallai-Ramsey theory, which looks into whether rainbow colored subgraphs or monochromatic subgraphs exist in a sufficiently large edge-colored complete graphs. A comprehensive survey of all known results with complete references is provided for common proof methods. Fundamental definitions and preliminary results with illustrations guide readers to comprehend recent innovations. Complete proofs and influential results are discussed with numerous open problems and conjectures. Researchers and students with an interest in edge-coloring, Ramsey Theory, and colored subgraphs will find this book a valuable guide for entering Gallai-Ramsey Theory.
Perfect graph theory was born out of a conjecture about graph colouring made by Claude Berge in 1960. That conjecture remains unsolved, but it has generated an important area of research in combinatorics. In this first book on the subject, the authors bring together all the questions, methods and ideas of perfect graph theory, and highlight the new methods and applications generated by Berge's conjecture.
Plastics, films, and synthetic fibers are among typical examples of polymer materials fabricated industrially in massive quantities as the basis of modern social life. By comparison, polymers from biological resources, including proteins, DNAs, and cotton fibers, are essential in various processes in living systems. Such polymers are molecular substances, constituted by the linking of hundreds to tens of thousands of small chemical unit (monomer) components. Thus, the form of polymer molecules is frequently expressed by line geometries, and their linear and non-linear forms are believed to constitute the fundamental basis for their properties and functions. In the field of polymer chemistry and polymer materials science, the choice of macromolecules has continuously been extended from linear or randomly branched forms toward a variety of precisely controlled topologies by the introduction of intriguing synthetic techniques. Moreover, during the first decade of this century, a number of impressive breakthroughs have been achieved to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unique properties and functions based on the form, i.e., topology, of polymer molecules. The introduction and application of topological geometry (soft geometry) to polymer molecules is a crucial requirement to account for the basic geometrical properties of polymer chains uniquely flexible in nature, in contrast to small chemical compounds conceived upon Euclidian geometry (hard geometry) principles. Topological geometry and graph theory are introduced for the systematic classification and notation of the non-linear constructions of polymer molecules, including not only branched but also single cyclic and multicyclic polymer topologies. On that basis, the geometrical-topological relationship between different polymers having distinctive constructions is discussed. A unique conception of topological isomerism is thus formed, which contrasts with that of conventional constitutional and stereoisomerism occurring in small chemical compounds. Through the close collaboration of topology experts Shimokawa and Ishihara and the polymer chemist Tezuka, this monograph covers the fundamentals and selected current topics of topology applied in polymers and topological polymer chemistry. In particular, the aim is to provide novel insights jointly revealed through a unique interaction between mathematics (topology) and polymer materials science.
This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today's mathematical landscape. This connection has been fruitful to both areas-representation theory provides a categorification of cluster algebras, while the study of cluster algebras provides representation theory with new objects of study. The six mini-courses comprising this text were delivered March 7-18, 2016 at a CIMPA (Centre International de Mathematiques Pures et Appliquees) research school held at the Universidad Nacional de Mar del Plata, Argentina. This research school was dedicated to the founder of the Argentinian research group in representation theory, M.I. Platzeck. The courses held were: Advanced homological algebra Introduction to the representation theory of algebras Auslander-Reiten theory for algebras of infinite representation type Cluster algebras arising from surfaces Cluster tilted algebras Cluster characters Introduction to K-theory Brauer graph algebras and applications to cluster algebras
This book is in honor of the 80th birthday of Stephen Hedetniemi. It describes advanced material in graph theory in the areas of domination, coloring, spanning cycles and circuits, and distance that grew out of research topics investigated by Stephen Hedetniemi. The purpose of this book is to provide background and principal results on these topics, along with same related problems and conjectures, for researchers in these areas. The most important features deal with material, results, and problems that researchers may not be aware of but may find of interest. Each chapter contains results, methods and information that will give readers the necessary background to investigate each topic in more detail.
This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference. Counting Lattice Paths Using Fourier Methods is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Readers should have a firm understanding of calculus, including integration, sequences, and series, as well as a familiarity with proofs and elementary linear algebra.
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Universite Pierre et Marie Curie - Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.
This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals. In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics. The book begins with a brief, self-contained overview of the modern theory of Groebner bases and the necessary algebraic and homological concepts from commutative algebra. Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes. Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics. Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented. Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics. Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.
This volume contains eight survey articles based on the invited lectures given at the 27th British Combinatorial Conference, held at the University of Birmingham in July 2019. This biennial conference is a well-established international event, with speakers from around the world. The volume provides an up-to-date overview of current research in several areas of combinatorics, including graph theory, cryptography, matroids, incidence geometries and graph limits. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of cutting-edge developments. The book provides a valuable survey of the present state of knowledge in combinatorics, and will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.
This book constitutes the refereed proceedings of the 19th International Workshop on Combinatorial Image Analysis, IWCIA 2018, held in Porto, Portugal, in November 2018. The 18 revised full papers presented were carefully reviewed and selected from 32 submissions. The papers are grouped into two sections. The first one includes nine papers devoted to theoretical foundations of combinatorial image analysis, including digital geometry and topology, array grammars, tilings and patterns, discrete geometry in non-rectangular grids, and other technical tools for image analysis. The second part includes nine papers presenting application-driven research on topics such as discrete tomography, image segmentation, texture analysis, and medical imaging.
Approximate groups have shot to prominence in recent years, driven both by rapid progress in the field itself and by a varied and expanding range of applications. This text collects, for the first time in book form, the main concepts and techniques into a single, self-contained introduction. The author presents a number of recent developments in the field, including an exposition of his recent result classifying nilpotent approximate groups. The book also features a considerable amount of previously unpublished material, as well as numerous exercises and motivating examples. It closes with a substantial chapter on applications, including an exposition of Breuillard, Green and Tao's celebrated approximate-group proof of Gromov's theorem on groups of polynomial growth. Written by an author who is at the forefront of both researching and teaching this topic, this text will be useful to advanced students and to researchers working in approximate groups and related areas.
Algorithmic Aspects of Graph Connectivity is the first comprehensive book on this central notion in graph and network theory, emphasizing its algorithmic aspects. Because of its wide applications in the fields of communication, transportation, and production, graph connectivity has made tremendous algorithmic progress under the influence of the theory of complexity and algorithms in modern computer science. The book contains various definitions of connectivity, including edge-connectivity and vertex-connectivity, and their ramifications, as well as related topics such as flows and cuts. The authors thoroughly discuss new concepts and algorithms that allow for quicker and more efficient computing, such as maximum adjacency ordering of vertices. Covering both basic definitions and advanced topics, this book can be used as a textbook in graduate courses in mathematical sciences, such as discrete mathematics, combinatorics, and operations research, and as a reference book for specialists in discrete mathematics and its applications.
This monograph is designed to be an in-depth introduction to domination in graphs. It focuses on three core concepts: domination, total domination, and independent domination. It contains major results on these foundational domination numbers, including a wide variety of in-depth proofs of selected results providing the reader with a toolbox of proof techniques used in domination theory. Additionally, the book is intended as an invaluable reference resource for a variety of readerships, namely, established researchers in the field of domination who want an updated, comprehensive coverage of domination theory; next, researchers in graph theory who wish to become acquainted with newer topics in domination, along with major developments in the field and some of the proof techniques used; and, graduate students with interests in graph theory, who might find the theory and many real-world applications of domination of interest for masters and doctoral thesis topics. The focused coverage also provides a good basis for seminars in domination theory or domination algorithms and complexity. The authors set out to provide the community with an updated and comprehensive treatment on the major topics in domination in graphs. And by Jove, they've done it! In recent years, the authors have curated and published two contributed volumes: Topics in Domination in Graphs, (c) 2020 and Structures of Domination in Graphs, (c) 2021. This book rounds out the coverage entirely. The reader is assumed to be acquainted with the basic concepts of graph theory and has had some exposure to graph theory at an introductory level. As graph theory terminology sometimes varies, a glossary of terms and notation is provided at the end of the book.
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open questions and suggestions for further reading.
This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Symposium on Combinatorial Optimization, ISCO 2018, held in Marrakesh, Marocco, in April 2018. The 35 revised full papers presented in this book were carefully reviewed and selected from 75 submissions. The symposium aims to bring together researchers from all the communities related to combinatorial optimization, including algorithms and complexity, mathematical programming and operations research.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XI International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2022). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics, and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.
This book provides the basis of a formal language and explores its possibilities in the characterization of multiplex networks. Armed with the formalism developed, the authors define structural metrics for multiplex networks. A methodology to generalize monoplex structural metrics to multiplex networks is also presented so that the reader will be able to generalize other metrics of interest in a systematic way. Therefore, this book will serve as a guide for the theoretical development of new multiplex metrics. Furthermore, this Brief describes the spectral properties of these networks in relation to concepts from algebraic graph theory and the theory of matrix polynomials. The text is rounded off by analyzing the different structural transitions present in multiplex systems as well as by a brief overview of some representative dynamical processes. Multiplex Networks will appeal to students, researchers, and professionals within the fields of network science, graph theory, and data science.
This is the first in a series of volumes, which provide an extensive overview of conjectures and open problems in graph theory. The readership of each volume is geared toward graduate students who may be searching for research ideas. However, the well-established mathematician will find the overall exposition engaging and enlightening. Each chapter, presented in a story-telling style, includes more than a simple collection of results on a particular topic. Each contribution conveys the history, evolution, and techniques used to solve the authors' favorite conjectures and open problems, enhancing the reader's overall comprehension and enthusiasm. The editors were inspired to create these volumes by the popular and well attended special sessions, entitled "My Favorite Graph Theory Conjectures," which were held at the winter AMS/MAA Joint Meeting in Boston (January, 2012), the SIAM Conference on Discrete Mathematics in Halifax (June,2012) and the winter AMS/MAA Joint meeting in Baltimore(January, 2014). In an effort to aid in the creation and dissemination of open problems, which is crucial to the growth and development of a field, the editors requested the speakers, as well as notable experts in graph theory, to contribute to these volumes.
This book concentrates on the modern theory of dynamical systems and its interactions with number theory and combinatorics. The greater part begins with a course in analytic number theory and focuses on its links with ergodic theory, presenting an exhaustive account of recent research on Sarnak's conjecture on Moebius disjointness. Selected topics involving more traditional connections between number theory and dynamics are also presented, including equidistribution, homogenous dynamics, and Lagrange and Markov spectra. In addition, some dynamical and number theoretical aspects of aperiodic order, some algebraic systems, and a recent development concerning tame systems are described.
This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text. |
![]() ![]() You may like...
Fashion Foundations - Early Writings on…
Kim K.P. Johnson, Susan J. Torntore, …
Hardcover
R4,064
Discovery Miles 40 640
New Perspectives on the History of…
Jennifer Evans, Alun Withey
Hardcover
R3,391
Discovery Miles 33 910
|