Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This collection honours Ron Doney's work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney's mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Le vy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov's pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov's theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today.The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem. The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.
This book gives an overview of research on graphs associated with commutative rings. The study of the connections between algebraic structures and certain graphs, especially finite groups and their Cayley graphs, is a classical subject which has attracted a lot of interest. More recently, attention has focused on graphs constructed from commutative rings, a field of study which has generated an extensive amount of research over the last three decades. The aim of this text is to consolidate this large body of work into a single volume, with the intention of encouraging interdisciplinary research between algebraists and graph theorists, using the tools of one subject to solve the problems of the other. The topics covered include the graphical and topological properties of zero-divisor graphs, total graphs and their transformations, and other graphs associated with rings. The book will be of interest to researchers in commutative algebra and graph theory and anyone interested in learning about the connections between these two subjects.
This textbook treats graph colouring as an algorithmic problem, with a strong emphasis on practical applications. The author describes and analyses some of the best-known algorithms for colouring graphs, focusing on whether these heuristics can provide optimal solutions in some cases; how they perform on graphs where the chromatic number is unknown; and whether they can produce better solutions than other algorithms for certain types of graphs, and why. The introductory chapters explain graph colouring, complexity theory, bounds and constructive algorithms. The author then shows how advanced, graph colouring techniques can be applied to classic real-world operational research problems such as designing seating plans, sports scheduling, and university timetabling. He includes many examples, suggestions for further reading, and historical notes, and the book is supplemented by an online suite of downloadable code. The book is of value to researchers, graduate students, and practitioners in the areas of operations research, theoretical computer science, optimization, and computational intelligence. The reader should have elementary knowledge of sets, matrices, and enumerative combinatorics.
Graph algorithms is a well-established subject in mathematics and computer science. Beyond classical application fields, such as approximation, combinatorial optimization, graphics, and operations research, graph algorithms have recently attracted increased attention from computational molecular biology and computational chemistry. Centered around the fundamental issue of graph isomorphism, this text goes beyond classical graph problems of shortest paths, spanning trees, flows in networks, and matchings in bipartite graphs. Advanced algorithmic results and techniques of practical relevance are presented in a coherent and consolidated way. This book introduces graph algorithms on an intuitive basis followed by a detailed exposition in a literate programming style, with correctness proofs as well as worst-case analyses. Furthermore, full C++ implementations of all algorithms presented are given using the LEDA library of efficient data structures and algorithms.
The main aim of the book is to give a review of all relevant information regarding a well-known and important problem of Feedback Arc Set (FAS). This review naturally also includes a history of the problem, as well as specific algorithms. To this point such a work does not exist: There are sources where one can find incomplete and perhaps untrustworthy information. With this book, information about FAS can be found easily in one place: formulation, description, theoretical background, applications, algorithms etc. Such a compendium will be of help to people involved in research, but also to people that want to quickly acquaint themselves with the problem and need reliable information. Thus research, professional work and learning can proceed in a more streamlined and faster way.
A variety of different social, natural and technological systems can be described by the same mathematical framework. This holds from Internet to the Food Webs and to the connections between different company boards given by common directors. In all these situations a graph of the elements and their connections displays a universal feature of some few elements with many connections and many with few. This book reports the experimental evidence of these Scale-free networks'' and provides to students and researchers a corpus of theoretical results and algorithms to analyse and understand these features. The contents of this book and their exposition makes it a clear textbook for the beginners and a reference book for the experts.
Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course. After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation expressions, binomial coefficients, partitions and permutations, and integer methods. The author then focuses on graph theory, covering topics such as trees, isomorphism, automorphism, planarity, coloring, and network flows. The final chapters discuss automorphism groups in algebraic counting methods and describe combinatorial designs, including Latin squares, block designs, projective planes, and affine planes. In addition, the appendix supplies background material on relations, functions, algebraic systems, finite fields, and vector spaces. Paving the way for students to understand and perform combinatorial calculations, this accessible text presents the discrete methods necessary for applications to algorithmic analysis, performance evaluation, and statistics as well as for the solution of combinatorial problems in engineering and the social sciences.
Professor Dominic Welsh has made significant contributions to the fields of combinatorics and discrete probability, including matroids, complexity, and percolation, and has taught, influenced and inspired generations of students and researchers in mathematics. This volume summarizes and reviews the consistent themes from his work through a series of articles written by renowned experts. These articles contain original research work, set in a broader context by the inclusion of review material. As a reference text in its own right, this book will be valuable to academic researchers, research students, and others seeking an introduction to the relevant contemporary aspects of these fields.
This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nykoeping, Sweden. The workshop regularly gathers some of the world's leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.
This book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague's astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that combines tools and concepts of linear algebra and combinatorics, with applications ranging from image processing and data analysis to molecular descriptors and random walks. It has attracted a lot of attention and has since emerged as an area on its own. Studies in spectral graph theory seek to determine properties of a graph through matrices associated with it. It turns out that eigenvalues and eigenvectors have surprisingly many connections with the structure of a graph. This book approaches this subject under the perspective of eigenvalue location algorithms. These are algorithms that, given a symmetric graph matrix M and a real interval I, return the number of eigenvalues of M that lie in I. Since the algorithms described here are typically very fast, they allow one to quickly approximate the value of any eigenvalue, which is a basic step in most applications of spectral graph theory. Moreover, these algorithms are convenient theoretical tools for proving bounds on eigenvalues and their multiplicities, which was quite useful to solve longstanding open problems in the area. This book brings these algorithms together, revealing how similar they are in spirit, and presents some of their main applications. This work can be of special interest to graduate students and researchers in spectral graph theory, and to any mathematician who wishes to know more about eigenvalues associated with graphs. It can also serve as a compact textbook for short courses on the topic.
This book focuses on the application of virtual reality (VR) technology in mining machinery. It gives a detailed introduction to the application of VR technology in virtual assembly, virtual planning, and virtual monitoring. Based on the theory of digital twin, VR technology and collaborative control technology are applied to coal mining machinery equipment, which lays a foundation for the digitalization and intellectualization of coal machinery equipment and broadens the application scope of virtual reality technology in the mechanical engineering field. Through the application of VR technology in coal machinery equipment, this book provides new methods and ideas for teaching activities, scientific research activities, and actual production with rich illustrations, related table introduction, unique research ideas, and other unique contents. This book could be a useful reference for researchers in mining machinery, simulation and modeling, computer-aided engineering (CAD and CAE) and design, visualization, mechanical engineering, and other disciplines.
This textbook offers an accessible introduction to combinatorics, infused with Solomon Golomb's insights and illustrative examples. Core concepts in combinatorics are presented with an engaging narrative that suits undergraduate study at any level. Featuring early coverage of the Principle of Inclusion-Exclusion and a unified treatment of permutations later on, the structure emphasizes the cohesive development of ideas. Combined with the conversational style, this approach is especially well suited to independent study. Falling naturally into three parts, the book begins with a flexible Chapter Zero that can be used to cover essential background topics, or as a standalone problem-solving course. The following three chapters cover core topics in combinatorics, such as combinations, generating functions, and permutations. The final three chapters present additional topics, such as Fibonacci numbers, finite groups, and combinatorial structures. Numerous illuminating examples are included throughout, along with exercises of all levels. Three appendices include additional exercises, examples, and solutions to a selection of problems. Solomon Golomb's Course on Undergraduate Combinatorics is ideal for introducing mathematics students to combinatorics at any stage in their program. There are no formal prerequisites, but readers will benefit from mathematical curiosity and a willingness to engage in the book's many entertaining challenges.
The Workshop for Women in Graph Theory and Applications was held at the Institute for Mathematics and Its Applications (University of Minnesota, Minneapolis) on August 19-23, 2019. During this five-day workshop, 42 participants performed collaborative research, in six teams, each focused on open problems in different areas of graph theory and its applications. The research work of each team was led by two experts in the corresponding area, who prior to the workshop, carefully selected relevant and meaningful open problems that would yield high-quality research and results of strong impact. As a result, all six teams have made significant contributions to several open problems in their respective areas. The workshop led to the creation of the Women in Graph Theory and Applications Research Collaboration Network, which provided the framework to continue collaborating and to produce this volume. This book contains six chapters, each of them on one of the different areas of research at the Workshop for Women in Graph Theory and Applications, and written by participants of each team.
This textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications.
This book highlights new and original contributions on Graph Theory and Combinatorial Optimization both from the theoretical point of view and from applications in all fields. The book chapters describe models and methods based on graphs, structural properties, discrete optimization, network optimization, mixed-integer programming, heuristics, meta-heuristics, math-heuristics, and exact methods as well as applications. The book collects selected contributions from the CTW2020 international conference (18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization), held online on September 14-16, 2020. The conference was organized by IASI-CNR with the contribution of University of Roma Tre, University Roma Tor Vergata, and CNRS-LIX and with the support of AIRO. It is addressed to researchers, PhD students, and practitioners in the fields of Graph Theory, Discrete Mathematics, Combinatorial Optimization, and Operations Research.
This book is an invaluable resource for graph theorists and researchers in related areas, and is the first of its kind. It provides a comprehensive catalogue of over 10,000 graphs, with accompanying tables of parameters and properties.
The theory of Schur-Weyl duality has had a profound influence over many areas of algebra and combinatorics. This text is original in two respects: it discusses affine q-Schur algebras and presents an algebraic, as opposed to geometric, approach to affine quantum Schur-Weyl theory. To begin, various algebraic structures are discussed, including double Ringel-Hall algebras of cyclic quivers and their quantum loop algebra interpretation. The rest of the book investigates the affine quantum Schur-Weyl duality on three levels. This includes the affine quantum Schur-Weyl reciprocity, the bridging role of affine q-Schur algebras between representations of the quantum loop algebras and those of the corresponding affine Hecke algebras, presentation of affine quantum Schur algebras and the realisation conjecture for the double Ringel-Hall algebra with a proof of the classical case. This text is ideal for researchers in algebra and graduate students who want to master Ringel-Hall algebras and Schur-Weyl duality.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
The long-awaited second edition of Norman Bigg's best-selling Discrete Mathematics, includes new chapters on statements and proof, logical framework, natural numbers, and the integers, in addition to updated chapters from the previous edition. Carefully structured, coherent and comprehensive, each chapter contains tailored exercises and solutions to selected questions, and miscellaneous exercises are presented throughout. This is an invaluable text for students seeking a clear introduction to discrete mathematics, graph theory, combinatorics, number theory and abstract algebra.
Matroid theory is a vibrant area of research that provides a unified way to understand graph theory, linear algebra and combinatorics via finite geometry. This book provides the first comprehensive introduction to the field which will appeal to undergraduate students and to any mathematician interested in the geometric approach to matroids. Written in a friendly, fun-to-read style and developed from the authors' own undergraduate courses, the book is ideal for students. Beginning with a basic introduction to matroids, the book quickly familiarizes the reader with the breadth of the subject, and specific examples are used to illustrate the theory and to help students see matroids as more than just generalizations of graphs. Over 300 exercises are included, with many hints and solutions so students can test their understanding of the materials covered. The authors have also included several projects and open-ended research problems for independent study.
Features recent advances and new applications in graph edge coloring Reviewing recent advances in the Edge Coloring Problem, "Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture" provides an overview of the current state of the science, explaining the interconnections among the results obtained from important graph theory studies. The authors introduce many new improved proofs of known results to identify and point to possible solutions for open problems in edge coloring. The book begins with an introduction to graph theory and the concept of edge coloring. Subsequent chapters explore important topics such as: Use of Tashkinov trees to obtain an asymptotic positive solution to Goldberg's conjecture Application of Vizing fans to obtain both known and new results Kierstead paths as an alternative to Vizing fans Classification problem of simple graphs Generalized edge coloring in which a color may appear more than once at a vertex This book also features first-time English translations of two groundbreaking papers written by Vadim Vizing on an estimate of the chromatic class of a p-graph and the critical graphs within a given chromatic class. Written by leading experts who have reinvigorated research in the field, "Graph Edge Coloring" is an excellent book for mathematics, optimization, and computer science courses at the graduate level. The book also serves as a valuable reference for researchers interested in discrete mathematics, graph theory, operations research, theoretical computer science, and combinatorial optimization.
Scientific visualization has always been an integral part of discovery, starting first with simplified drawings of the pre-Enlightenment and progressing to present day. Mathematical formalism often supersedes visual methods, but their use is at the core of the mental process. As historical examples, a spatial description of flow led to electromagnetic theory, and without visualization of crystals, structural chemistry would not exist. With the advent of computer graphics technology, visualization has become a driving force in modern computing. A Concise Introduction to Scientific Visualization - Past, Present, and Future serves as a primer to visualization without assuming prior knowledge. It discusses both the history of visualization in scientific endeavour, and how scientific visualization is currently shaping the progress of science as a multi-disciplinary domain.
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques. |
You may like...
Magic and Antimagic Graphs - Attributes…
Martin Baca, Mirka Miller, …
Hardcover
R3,633
Discovery Miles 36 330
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,525
Discovery Miles 15 250
Advanced Studies in Behaviormetrics and…
Tadashi Imaizumi, Atsuho Nakayama, …
Hardcover
R3,594
Discovery Miles 35 940
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,261
Discovery Miles 22 610
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,264
Discovery Miles 42 640
Complex Networks & Their Applications IX…
Rosa M. Benito, Chantal Cherifi, …
Hardcover
R8,158
Discovery Miles 81 580
Active Lighting and Its Application for…
Katsushi Ikeuchi, Yasuyuki Matsushita, …
Hardcover
R4,592
Discovery Miles 45 920
|