![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This volume contains nine survey articles based on the invited lectures given at the 24th British Combinatorial Conference, held at Royal Holloway, University of London in July 2013. This biennial conference is a well-established international event, with speakers from around the world. The volume provides an up-to-date overview of current research in several areas of combinatorics, including graph theory, matroid theory and automatic counting, as well as connections to coding theory and Bent functions. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of cutting-edge developments. The book provides a valuable survey of the present state of knowledge in combinatorics, and will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.
Journey into Discrete Mathematics is designed for use in a first course in mathematical abstraction for early-career undergraduate mathematics majors. The important ideas of discrete mathematics are included-logic, sets, proof writing, relations, counting, number theory, and graph theory-in a manner that promotes development of a mathematical mindset and prepares students for further study. While the treatment is designed to prepare the student reader for the mathematics major, the book remains attractive and appealing to students of computer science and other problem-solving disciplines. The exposition is exquisite and engaging and features detailed descriptions of the thought processes that one might follow to attack the problems of mathematics. The problems are appealing and vary widely in depth and difficulty. Careful design of the book helps the student reader learn to think like a mathematician through the exposition and the problems provided. Several of the core topics, including counting, number theory, and graph theory, are visited twice: once in an introductory manner and then again in a later chapter with more advanced concepts and with a deeper perspective. Owen D. Byer and Deirdre L. Smeltzer are both Professors of Mathematics at Eastern Mennonite University. Kenneth L. Wantz is Professor of Mathematics at Regent University. Collectively the authors have specialized expertise and research publications ranging widely over discrete mathematics and have over fifty semesters of combined experience in teaching this subject.
The 400-year-old Kepler conjecture asserts that no packing of congruent balls in three dimensions can have a density exceeding the familiar pyramid-shaped cannonball arrangement. In this book, a new proof of the conjecture is presented that makes it accessible for the first time to a broad mathematical audience. The book also presents solutions to other previously unresolved conjectures in discrete geometry, including the strong dodecahedral conjecture on the smallest surface area of a Voronoi cell in a sphere packing. This book is also currently being used as a blueprint for a large-scale formal proof project, which aims to check every logical inference of the proof of the Kepler conjecture by computer. This is an indispensable resource for those who want to be brought up to date with research on the Kepler conjecture.
Several geometric problems can be formulated in terms of the arrangement of a collection of curves in a plane, which has made this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-Davenport-Schinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed. Researchers in computational and combinatorial geometry should find much to interest them in this book.
This volume contains nine survey articles based on the invited lectures given at the 23rd British Combinatorial Conference, held at Exeter in July 2011. This biennial conference is a well-established international event, with speakers from all over the world. By its nature, this volume provides an up-to-date overview of current research activity in several areas of combinatorics, including extremal graph theory, the cyclic sieving phenomenon and transversals in Latin squares. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of the most recent developments. The book provides a valuable survey of the present state of knowledge in combinatorics. It will be useful to research workers and advanced graduate students, primarily in mathematics but also in computer science and statistics.
Methods of dimensionality reduction provide a way to understand and visualize the structure of complex data sets. Traditional methods like principal component analysis and classical metric multidimensional scaling suffer from being based on linear models. Until recently, very few methods were able to reduce the data dimensionality in a nonlinear way. However, since the late nineties, many new methods have been developed and nonlinear dimensionality reduction, also called manifold learning, has become a hot topic. New advances that account for this rapid growth are, e.g. the use of graphs to represent the manifold topology, and the use of new metrics like the geodesic distance. In addition, new optimization schemes, based on kernel techniques and spectral decomposition, have lead to spectral embedding, which encompasses many of the recently developed methods. This book describes existing and advanced methods to reduce the dimensionality of numerical databases. For each method, the description starts from intuitive ideas, develops the necessary mathematical details, and ends by outlining the algorithmic implementation. Methods are compared with each other with the help of different illustrative examples. The purpose of the book is to summarize clear facts and ideas about well-known methods as well as recent developments in the topic of nonlinear dimensionality reduction. With this goal in mind, methods are all described from a unifying point of view, in order to highlight their respective strengths and shortcomings. The book is primarily intended for statisticians, computer scientists and data analysts. It is also accessible to other practitioners having a basic background in statistics and/or computational learning, like psychologists (in psychometry) and economists.
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence, and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids, and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
Association schemes are of interest to both mathematicians and statisticians and this book was written with both audiences in mind. For statisticians, it shows how to construct designs for experiments in blocks, how to compare such designs, and how to analyse data from them. The reader is only assumed to know very basic abstract algebra. For pure mathematicians, it tells why association schemes are important and develops the theory to the level of advanced research. This book arose from a course successfully taught by the author and as such the material is thoroughly class-tested. There are a great number of examples and exercises that will increase the book's appeal to both graduate students and their instructors. It is ideal for those coming either from pure mathematics or statistics backgrounds who wish to develop their understanding of association schemes.
This 2003 book provides an analysis of combinatorial games - games not involving chance or hidden information. It contains a fascinating collection of articles by some well-known names in the field, such as Elwyn Berlekamp and John Conway, plus other researchers in mathematics and computer science, together with some top game players. The articles run the gamut from theoretical approaches (infinite games, generalizations of game values, 2-player cellular automata, Alpha-Beta pruning under partial orders) to other games (Amazons, Chomp, Dot-and-Boxes, Go, Chess, Hex). Many of these advances reflect the interplay of the computer science and the mathematics. The book ends with a bibliography by A. Fraenkel and a list of combinatorial game theory problems by R. K. Guy. Like its predecessor, Games of No Chance, this should be on the shelf of all serious combinatorial games enthusiasts.
This 1997 work explores the role of probabilistic methods for solving combinatorial problems. These methods not only provide the means of efficiently using such notions as characteristic and generating functions, the moment method and so on but also let us use the powerful technique of limit theorems. The basic objects under investigation are nonnegative matrices, partitions and mappings of finite sets, with special emphasis on permutations and graphs, and equivalence classes specified on sequences of finite length consisting of elements of partially ordered sets; these specify the probabilistic setting of Sachkov's general combinatorial scheme. The author pays special attention to using probabilistic methods to obtain asymptotic formulae that are difficult to derive using combinatorial methods. This was an important book, describing many ideas not previously available in English; the author has taken the chance to rewrite parts of the text and refresh the references where appropriate.
Graph connectivities and submodular functions are two widely
applied and fast developing fields of combinatorial optimization.
Connections in Combinatorial Optimization not only includes the
most recent results, but also highlights several surprising
connections between diverse topics within combinatorial
optimization. It offers a unified treatment of developments in the
concepts and algorithmic methods of the area, starting from basic
results on graphs, matroids and polyhedral combinatorics, through
the advanced topics of connectivity issues of graphs and networks,
to the abstract theory and applications of submodular optimization.
Difficult theorems and algorithms are made accessible to graduate
students in mathematics, computer science, operations research,
informatics and communication.
Marking 94 years since its first appearance, this book provides an annotated translation of Sainte-Lague's seminal monograph Les reseaux (ou graphes), drawing attention to its fundamental principles and ideas. Sainte-Lague's 1926 monograph appeared only in French, but in the 1990s H. Gropp published a number of English papers describing several aspects of the book. He expressed his hope that an English translation might sometime be available to the mathematics community. In the 10 years following the appearance of Les reseaux (ou graphes), the development of graph theory continued, culminating in the publication of the first full book on the theory of finite and infinite graphs in 1936 by Denes Koenig. This remained the only well-known text until Claude Berge's 1958 book on the theory and applications of graphs. By 1960, graph theory had emerged as a significant mathematical discipline of its own. This book will be of interest to graph theorists and mathematical historians.
Certain constrained combinatorial optimization problems have a natural analogue in the continuous setting of the classical isoperimetric problem. The study of so called combinatorial isoperimetric problems exploits similarities between these two, seemingly disparate, settings. This text focuses on global methods. This means that morphisms, typically arising from symmetry or direct product decomposition, are employed to transform new problems into more restricted and easily solvable settings whilst preserving essential structure. This book is based on Professor Harper's many years' experience in teaching this subject and is ideal for graduate students entering the field. The author has increased the utility of the text for teaching by including worked examples, exercises and material about applications to computer science. Applied systematically, the global point of view can lead to surprising insights and results, and established researchers will find this to be a valuable reference work on an innovative method for problem solving.
These sequences exhibit some surprising properties that make them a fascinating subject for research in combinatorial analysis. This 1995 book on the subject by two of its leading researchers will be an important resource for students and professionals in combinatorics, computational geometry and related fields.
This title presents new ideas on the visualization of differential equations with user-configurable tools. The authors use the widely-used computer algebra system, Mathematica, to provide an integrated environment for programming, visualizing graphics, and running commentary for learning and working with differential equations.
This book is a continuation of Theory of Matroids (also edited by Neil White), and again consists of a series of related surveys that have been contributed by authorities in the area. The volume begins with three chapters on coordinatisations, followed by one on matching theory. The next two deal with transversal and simplicial matroids. These are followed by studies of the important matroid invariants. The final chapter deals with matroids in combinatorial optimisation, a topic of much current interest. The whole volume has been carefully edited to ensure a uniform style and notation throughout, and to make a work that can be used as a reference or as an introductory textbook for graduate students or non-specialists.
There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books, andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to 't very complex models that cannot be 't by alternative frequentist methods. To 't Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN)
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica (R), is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.
This is a collection of surveys and research papers on topics of interest in combinatorics, given at a conference in Matrahaza, Hungary. Originally published in journal form, it is here reissued as a book due to its special interest. It is dedicated to Paul Erdoes, who attended the conference and who is represented by two articles in the collection, including one, unfinished, which he was writing on the eve of his sudden death. Erdoes was one of the greatest mathematicians of his century and often the subject of anecdotes about his somewhat unusual lifestyle. A preface, written by friends and colleagues, gives a flavour of his life, including many such stories, and also describes the broad outline and importance of his work in combinatorics and other related fields. Here is a succinct introduction to important ideas in combinatorics for researchers and graduate students.
This volume, the third in a sequence that began with The Theory of Matroids and Combinatorial Geometries, concentrates on the applications of matroid theory to a variety of topics from engineering (rigidity and scene analysis), combinatorics (graphs, lattices, codes and designs), topology and operations research (the greedy algorithm). As with its predecessors, the contributors to this volume have written their articles to form a cohesive account so that the result is a volume which will be a valuable reference for research workers.
The book is devoted to the study of classical combinatorial structures such as random graphs, permutations, and systems of random linear equations in finite fields. The author shows how the application of the generalized scheme of allocation in the study of random graphs and permutations reduces the combinatorial problems to classical problems of probability theory on the summation of independent random variables. He offers recent research by Russian mathematicians, including a discussion of equations containing an unknown permutation, and the first English-language presentation of techniques for solving systems of random linear equations in finite fields. These new results will interest specialists in combinatorics and probability theory and will also be useful to researchers in applied areas of probabilistic combinatorics such as communication theory, cryptology, and mathematical genetics.
This book combines traditional graph theory with the matroid view of graphs in order to throw light on the mathematical approach to network analysis. The authors examine in detail two dual structures associated with a graph, namely circuits and cutsets. These are strongly dependent on one another and together constitute a third, hybrid, vertex-independent structure called a graphoid, whose study is here termed hybrid graph theory. This approach has particular relevance for network analysis. The first account of the subject in book form, the text includes many new results as well as the synthesizing and reworking of much research done over the past thirty years (historically, the study of hybrid aspects of graphs owes much to the foundational work of Japanese researchers). This work will be regarded as the definitive account of the subject, suitable for all working in theoretical network analysis: mathematicians, computer scientists or electrical engineers.
First published in 1993, this thesis is concerned with the design of efficient algorithms for listing combinatorial structures. The research described here gives some answers to the following questions: which families of combinatorial structures have fast computer algorithms for listing their members? What general methods are useful for listing combinatorial structures? How can these be applied to those families which are of interest to theoretical computer scientists and combinatorialists? Amongst those families considered are unlabelled graphs, first order one properties, Hamiltonian graphs, graphs with cliques of specified order, and k-colourable graphs. Some related work is also included, which compares the listing problem with the difficulty of solving the existence problem, the construction problem, the random sampling problem, and the counting problem. In particular, the difficulty of evaluating Polya's cycle polynomial is demonstrated.
This volume contains survey articles based on the invited lectures given at the Twenty-second British Combinatorial Conference, held in July 2009 at the University of St Andrews. This biennial conference is a well-established international event, with speakers from all over the world. By its nature this volume provides an up-to-date overview of current research activity in several areas of combinatorics, including graph theory, design theory and packing problems. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world s foremost researchers in their fields, and here they summarize existing results, and give a unique preview of the most recent developments. The book provides a valuable survey of the present state of knowledge in combinatorics. It will be useful to research workers and advanced graduate students, primarily in mathematics but also in computer science, statistics and engineering. |
![]() ![]() You may like...
Research Trends in Graph Theory and…
Daniela Ferrero, Leslie Hogben, …
Hardcover
R3,422
Discovery Miles 34 220
Graphs and Discrete Dirichlet Spaces
Matthias Keller, Daniel Lenz, …
Hardcover
R4,185
Discovery Miles 41 850
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,372
Discovery Miles 23 720
|