Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This book provides a broad overview of the entire field of DNA computation, tracing its history and development. It contains detailed descriptions of all major theoretical models and experimental results to date and discusses potential future developments. It concludes by outlining the challenges currently faced by researchers in the field. This book will be a useful reference for researchers and students, as well as an accessible introduction for those new to the field.
This book is a concept-oriented treatment of the structure theory of association schemes. The generalization of Sylow 's group theoretic theorems to scheme theory arises as a consequence of arithmetical considerations about quotient schemes. The theory of Coxeter schemes (equivalent to the theory of buildings) emerges naturally and yields a purely algebraic proof of Tits main theorem on buildings of spherical type. Lectures: T.H. Brylawski: The Tutte polynomial.- D.J.A. Welsh: Matroids and combinatorial optimisation.- Seminars: M. Barnabei, A. Brini, G.-C. Rota: Un introduzione alla teoria delle funzioni di M bius.- A. Brini: Some remarks on the critical problem.- J. Oxley: On 3-connected matroids and graphs.- R. Peele: The poset of subpartitions and Cayley 's formula for the complexity of a complete graph.- A. Recski: Engineering applications of matroids.- T. Zaslavisky: Voltage-graphic matroids.
This book is an introduction to the two closely related subjects of quantum optics and quantum information. The book gives a simple, self-contained introduction to both subjects, while illustrating the physical principles of quantum information processing using quantum optical systems. To make the book accessible to those with backgrounds other than physics, the authors also include a brief review of quantum mechanics. Furthermore, some aspects of quantum information, for example those pertaining to recent experiments on cavity QED and quantum dots, are described here for the first time in book form.
This volume contains revised papers that were presented at the international workshop entitled Computational Methods for Algebraic Spline Surfaces ("COMPASS"), which was held from September 29 to October 3, 2003, at Schloss Weinberg, Kefermarkt (A- tria). The workshop was mainly devoted to approximate algebraic geometry and its - plications. The organizers wanted to emphasize the novel idea of approximate implici- zation, that has strengthened the existing link between CAD / CAGD (Computer Aided Geometric Design) and classical algebraic geometry. The existing methods for exact implicitization (i. e., for conversion from the parametric to an implicit representation of a curve or surface) require exact arithmetic and are too slow and too expensive for industrial use. Thus the duality of an implicit representation and a parametric repres- tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders, cones and toroidal surfaces. On the other hand, this duality is a very useful tool for - veloping ef?cient algorithms. Approximate implicitization makes this duality available for general curves and surfaces. The traditional exact implicitization of parametric surfaces produce global rep- sentations, which are exact everywhere. The surface patches used in CAD, however, are always de?ned within a small box only; they are obtained for a bounded parameter domain (typically a rectangle, or - in the case of "trimmed" surface patches - a subset of a rectangle). Consequently, a globally exact representation is not really needed in practice."
This textbook illuminates the field of discrete mathematics with examples, theory, and applications of the discrete volume of a polytope. The authors have weaved a unifying thread through basic yet deep ideas in discrete geometry, combinatorics, and number theory. We encounter here a friendly invitation to the field of "counting integer points in polytopes," and its various connections to elementary finite Fourier analysis, generating functions, the Frobenius coin-exchange problem, solid angles, magic squares, Dedekind sums, computational geometry, and more. With 250 exercises and open problems, the reader feels like an active participant.
Trees are a fundamental object in graph theory and combinatorics as well as a basic object for data structures and algorithms in computer science. During thelastyearsresearchrelatedto(random)treeshasbeenconstantlyincreasing and several asymptotic and probabilistic techniques have been developed in order to describe characteristics of interest of large trees in di?erent settings. Thepurposeofthisbookistoprovideathoroughintroductionintovarious aspects of trees in randomsettings anda systematic treatment ofthe involved mathematicaltechniques. It shouldserveasa referencebookaswellasa basis for future research. One major conceptual aspect is to connect combinatorial and probabilistic methods that range from counting techniques (generating functions, bijections) over asymptotic methods (singularity analysis, saddle point techniques) to various sophisticated techniques in asymptotic probab- ity (convergence of stochastic processes, martingales). However, the reading of the book requires just basic knowledge in combinatorics, complex analysis, functional analysis and probability theory of master degree level. It is also part of concept of the book to provide full proofs of the major results even if they are technically involved and lengthy.
Hungarian mathematics has always been known for discrete mathematics, including combinatorial number theory, set theory and recently random structures, and combinatorial geometry. The recent volume contains high level surveys on these topics with authors mostly being invited speakers for the conference "Horizons of Combinatorics" held in Balatonalmadi, Hungary in 2006. The collection gives an overview of recent trends and results in a large part of combinatorics and related topics.
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemeredi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.
Substantially revised, reorganised and updated, the second edition now comprises eighteen chapters, carefully arranged in a straightforward and logical manner, with many new results and open problems. As well as covering the theoretical aspects of the subject, with detailed proofs of many important results, the authors present a number of algorithms, and whole chapters are devoted to topics such as branchings, feedback arc and vertex sets, connectivity augmentations, sparse subdigraphs with prescribed connectivity, and also packing, covering and decompositions of digraphs. Throughout the book, there is a strong focus on applications which include quantum mechanics, bioinformatics, embedded computing, and the travelling salesman problem. Detailed indices and topic-oriented chapters ease navigation, and more than 650 exercises, 170 figures and 150 open problems are included to help immerse the reader in all aspects of the subject.
From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making it appropriate for a course in mathematics or computer science. ...] Overall, this is an excellent expository text, and will be very useful to both the student and researcher." Mathematical Reviews
Recent progress in research, teaching and communication has arisen
from the use of new tools in visualization. To be fruitful,
visualization needs precision and beauty. This book is a source of
mathematical illustrations by mathematicians as well as artists. It
offers examples in many basic mathematical fields including
polyhedra theory, group theory, solving polynomial equations,
dynamical systems and differential topology.
In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justi?cation and consistency of mathematics. Paradigmatic in this - spect is Hilbert's program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (?nitistic reasoning), of the consistency of such formalized theories. While interest in modi?ed v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.
Networked computers are ubiquitous, and are subject to attack, misuse, and abuse. One method to counteracting this cyber threat is to provide security analysts with better tools to discover patterns, detect anomalies, identify correlations, and communicate their findings. Visualization for computer security (VizSec) researchers and developers are doing just that. VizSec is about putting robust information visualization tools into the hands of human analysts to take advantage of the power of the human perceptual and cognitive processes in solving computer security problems. This volume collects the papers presented at the 4th International Workshop on Computer Security - VizSec 2007.
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
In the course of fuzzy technological development, fuzzy graph theory was identified quite early on for its importance in making things work. Two very important and useful concepts are those of granularity and of nonlinear ap proximations. The concept of granularity has evolved as a cornerstone of Lotfi A.Zadeh's theory of perception, while the concept of nonlinear approx imation is the driving force behind the success of the consumer electronics products manufacturing. It is fair to say fuzzy graph theory paved the way for engineers to build many rule-based expert systems. In the open literature, there are many papers written on the subject of fuzzy graph theory. However, there are relatively books available on the very same topic. Professors' Mordeson and Nair have made a real contribution in putting together a very com prehensive book on fuzzy graphs and fuzzy hypergraphs. In particular, the discussion on hypergraphs certainly is an innovative idea. For an experienced engineer who has spent a great deal of time in the lab oratory, it is usually a good idea to revisit the theory. Professors Mordeson and Nair have created such a volume which enables engineers and design ers to benefit from referencing in one place. In addition, this volume is a testament to the numerous contributions Professor John N. Mordeson and his associates have made to the mathematical studies in so many different topics of fuzzy mathematics."
The primary aim of this book is to present a coherent introduction to graph theory, suitable as a textbook for advanced undergraduate and beginning graduate students in mathematics and computer science. It provides a systematic treatment of the theory of graphs without sacrificing its intuitive and aesthetic appeal. Commonly used proof techniques are described and illustrated. The book also serves as an introduction to research in graph theory.
This book features articles written by some of the most prominent leading applied mathematicians as well as young and promising ones. The common objective of these articles is to present an important issue which is currently widely discussed in scientific investigation with major human, economic or ecological implications. Each article is as deep as an expert lecture but is also self-contained, so that even isolated scientists with limited resources can profit greatly from it.
The editors and authors dedicate this book to Bernhard Korte on the occasion of his seventieth birthday. We, the editors, are happy about the overwhelming feedback to our initiative to honor him with this book and with a workshop in Bonn on November 3-7,2008.Althoughthiswouldbeareasontolookback, wewouldratherliketolook forward and see what are the interesting research directions today. This book is written by leading experts in combinatorial optimization. All - pers were carefully reviewed, and eventually twenty-three of the invited papers were accepted for this book. The breadth of topics is typical for the eld: combinatorial optimization builds bridges between areas like combinatorics and graph theory, submodular functions and matroids, network ows and connectivity, approximation algorithms and mat- matical programming, computational geometry and polyhedral combinatorics. All these topics are related, and they are all addressed in this book. Combi- torial optimization is also known for its numerous applications. To limit the scope, however, this book is not primarily about applications, although some are mentioned at various places. Most papers in this volume are surveys that provide an excellent overview of an activeresearcharea, butthisbookalsocontainsmanynewresults.Highlightingmany of the currently most interesting research directions in combinatorial optimization, we hope that this book constitutes a good basis for future research in these area
Creativity plays an important role in all human activities, from the visual arts to cinema and theatre, and in particular in science and mathematics . This volume, published only in English in the series "Mathematics and Culture," stresses the strong links between mathematics, culture and creativity in architecture, contemporary art, geometry, computer graphics, literature, theatre and cinema. So this book is designed not only for mathematicians but for all the people who have an interest in the various aspects of culture, both scientific and literary, with a special emphasis on the visual aspects.
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Handbook of Product Graphs, Second Edition examines the dichotomy between the structure of products and their subgraphs. It also features the design of efficient algorithms that recognize products and their subgraphs and explores the relationship between graph parameters of the product and factors. Extensively revised and expanded, the handbook presents full proofs of many important results as well as up-to-date research and conjectures. Results and Algorithms New to the Second Edition:
The second edition of this classic handbook provides a thorough introduction to the subject and an extensive survey of the field. The first three parts of the book cover graph products in detail. The authors discuss algebraic properties, such as factorization and cancellation, and explore interesting and important classes of subgraphs. The fourth part presents algorithms for the recognition of products and related classes of graphs. The final two parts focus on graph invariants and infinite, directed, and product-like graphs. Sample implementations of selected algorithms and other information are available on the book's website, which can be reached via the authors? home pages.
These notes are devoted to the study of some classical problems in the Geometry of Banach spaces. The novelty lies in the fact that their solution relies heavily on techniques coming from Descriptive Set Theory. Thecentralthemeisuniversalityproblems.Inparticular, thetextprovides an exposition of the methods developed recently in order to treat questions of the following type: (Q) LetC be a class of separable Banach spaces such that every space X in the classC has a certain property, say property (P). When can we ?nd a separable Banach space Y which has property (P) and contains an isomorphic copy of every member ofC? We will consider quite classical properties of Banach spaces, such as "- ing re?exive," "having separable dual," "not containing an isomorphic copy of c," "being non-universal," etc. 0 It turns out that a positive answer to problem (Q), for any of the above mentioned properties, is possible if (and essentially only if) the classC is "simple." The "simplicity" ofC is measured in set theoretic terms. Precisely, if the classC is analytic in a natural "coding" of separable Banach spaces, then we can indeed ?nd a separable space Y which is universal for the class C and satis?es the requirements imposed above.
Graph algorithms are easy to visualize and indeed there already exists a variety of packages to animate the dynamics when solving problems from graph theory. Still it can be difficult to understand the ideas behind the algorithm from the dynamic display alone. CATBox consists of a software system for animating graph algorithms and a course book which we developed simultaneously. The software system presents both the algorithm and the graph and puts the user always in control of the actual code that is executed. In the course book, intended for readers at advanced undergraduate or graduate level, computer exercises and examples replace the usual static pictures of algorithm dynamics. For this volume we have chosen solely algorithms for classical problems from combinatorial optimization, such as minimum spanning trees, shortest paths, maximum flows, minimum cost flows, weighted and unweighted matchings both for bipartite and non-bipartite graphs. Find more information at http: //schliep.org/CATBox/.
This textbook covers a diversity of topics in graph and network theory, both from a theoretical standpoint, and from an applied modelling point of view. Mathematica (R) is used to demonstrate much of the modelling aspects. Graph theory and model building tools are developed in tandem with effective techniques for solving practical problems via computer implementation. The book is designed with three primary readerships in mind. Individual syllabi or suggested sequences for study are provided for each of three student audiences: mathematics, applied mathematics/operations research, and computer science. In addition to the visual appeal of each page, the text contains an abundance of gems. Most chapters open with real-life problem descriptions which serve as motivation for the theoretical development of the subject matter. Each chapter concludes with three different sets of exercises. The first set of exercises are standard and geared toward the more mathematically inclined reader. Many of these are routine exercises, designed to test understanding of the material in the text, but some are more challenging. The second set of exercises is earmarked for the computer technologically savvy reader and offer computer exercises using Mathematica. The final set consists of larger projects aimed at equipping those readers with backgrounds in the applied sciences to apply the necessary skills learned in the chapter in the context of real-world problem solving. Additionally, each chapter offers biographical notes as well as pictures of graph theorists and mathematicians who have contributed significantly to the development of the results documented in the chapter. These notes are meant to bring the topics covered to life, allowing the reader to associate faces with some of the important discoveries and results presented. In total, approximately 100 biographical notes are presented throughout the book. The material in this book has been organized into three distinct parts, each with a different focus. The first part is devoted to topics in network optimization, with a focus on basic notions in algorithmic complexity and the computation of optimal paths, shortest spanning trees, maximum flows and minimum-cost flows in networks, as well as the solution of network location problems. The second part is devoted to a variety of classical problems in graph theory, including problems related to matchings, edge and vertex traversal, connectivity, planarity, edge and vertex coloring, and orientations of graphs. Finally, the focus in the third part is on modern areas of study in graph theory, covering graph domination, Ramsey theory, extremal graph theory, graph enumeration, and application of the probabilistic method. |
You may like...
Number Theory and Combinatorics - A…
Bruce M. Landman, Florian Luca, …
Hardcover
R5,400
Discovery Miles 54 000
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,261
Discovery Miles 22 610
Algebraic Number Theory and Fermat's…
Ian Stewart, David Tall
Paperback
R1,230
Discovery Miles 12 300
Research Trends in Graph Theory and…
Daniela Ferrero, Leslie Hogben, …
Hardcover
R3,259
Discovery Miles 32 590
Handbook of Research on Advanced…
Madhumangal Pal, Sovan Samanta, …
Hardcover
R7,051
Discovery Miles 70 510
|