Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This is a collection of surveys and research papers on topics of interest in combinatorics, given at a conference in Matrahaza, Hungary. Originally published in journal form, it is here reissued as a book due to its special interest. It is dedicated to Paul Erdoes, who attended the conference and who is represented by two articles in the collection, including one, unfinished, which he was writing on the eve of his sudden death. Erdoes was one of the greatest mathematicians of his century and often the subject of anecdotes about his somewhat unusual lifestyle. A preface, written by friends and colleagues, gives a flavour of his life, including many such stories, and also describes the broad outline and importance of his work in combinatorics and other related fields. Here is a succinct introduction to important ideas in combinatorics for researchers and graduate students.
This volume, the third in a sequence that began with The Theory of Matroids and Combinatorial Geometries, concentrates on the applications of matroid theory to a variety of topics from engineering (rigidity and scene analysis), combinatorics (graphs, lattices, codes and designs), topology and operations research (the greedy algorithm). As with its predecessors, the contributors to this volume have written their articles to form a cohesive account so that the result is a volume which will be a valuable reference for research workers.
The book is devoted to the study of classical combinatorial structures such as random graphs, permutations, and systems of random linear equations in finite fields. The author shows how the application of the generalized scheme of allocation in the study of random graphs and permutations reduces the combinatorial problems to classical problems of probability theory on the summation of independent random variables. He offers recent research by Russian mathematicians, including a discussion of equations containing an unknown permutation, and the first English-language presentation of techniques for solving systems of random linear equations in finite fields. These new results will interest specialists in combinatorics and probability theory and will also be useful to researchers in applied areas of probabilistic combinatorics such as communication theory, cryptology, and mathematical genetics.
This book contains 33 papers from among the 41 papers presented at the Eighth International Conference on Fibonacci Numbers and Their Applications which was held at the Rochester Institute of Technology, Rochester, New York, from June 22 to June 26, 1998. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relations are their unifying bond. It is anticipated that this book, like its seven predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. June 1, 1999 The Editor F. T. Howard Mathematics and Computer Science Wake Forest University Box 7388 Reynolda Station Winston-Salem, NC USA xvii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Anderson, Peter G. , Chairman Horadam, A. F. (Australia), Co-Chair Arpaya, Pasqual Philippou, A. N. (Cyprus), Co-Chair Biles, John Bergum, G. E. (U. S. A. ) Orr, Richard Filipponi, P. (Italy) Radziszowski, Stanislaw Harborth, H. (Germany) Rich, Nelson Horibe, Y. (Japan) Howard, F. (U. S. A. ) Johnson, M. (U. S. A. ) Kiss, P. (Hungary) Phillips, G. M. (Scotland) Turner, J. (New Zealand) Waddill, M. E. (U. S. A. ) xix LIST OF CONTRIBUTORS TO THE CONFERENCE AGRATINI, OCTAVIAN, "Unusual Equations in Study. " *ANDO, SHIRO, (coauthor Daihachiro Sato), "On the Generalized Binomial Coefficients Defined by Strong Divisibility Sequences. " *ANATASSOVA, VASSIA K. , (coauthor J. C.
This book combines traditional graph theory with the matroid view of graphs in order to throw light on the mathematical approach to network analysis. The authors examine in detail two dual structures associated with a graph, namely circuits and cutsets. These are strongly dependent on one another and together constitute a third, hybrid, vertex-independent structure called a graphoid, whose study is here termed hybrid graph theory. This approach has particular relevance for network analysis. The first account of the subject in book form, the text includes many new results as well as the synthesizing and reworking of much research done over the past thirty years (historically, the study of hybrid aspects of graphs owes much to the foundational work of Japanese researchers). This work will be regarded as the definitive account of the subject, suitable for all working in theoretical network analysis: mathematicians, computer scientists or electrical engineers.
This volume contains the accounts of papers delivered at the Nato Advanced Study Institute on Finite and Infinite Combinatorics in Sets and Logic held at the Banff Centre, Alberta, Canada from April 21 to May 4, 1991. As the title suggests the meeting brought together workers interested in the interplay between finite and infinite combinatorics, set theory, graph theory and logic. It used to be that infinite set theory, finite combinatorics and logic could be viewed as quite separate and independent subjects. But more and more those disciplines grow together and become interdependent of each other with ever more problems and results appearing which concern all of those disciplines. I appreciate the financial support which was provided by the N. A. T. O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the Department of Mathematics and Statistics of the University of Calgary. 11l'te meeting on Finite and Infinite Combinatorics in Sets and Logic followed two other meetings on discrete mathematics held in Banff, the Symposium on Ordered Sets in 1981 and the Symposium on Graphs and Order in 1984. The growing inter-relation between the different areas in discrete mathematics is maybe best illustrated by the fact that many of the participants who were present at the previous meetings also attended this meeting on Finite and Infinite Combinatorics in Sets and Logic.
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
First published in 1993, this thesis is concerned with the design of efficient algorithms for listing combinatorial structures. The research described here gives some answers to the following questions: which families of combinatorial structures have fast computer algorithms for listing their members? What general methods are useful for listing combinatorial structures? How can these be applied to those families which are of interest to theoretical computer scientists and combinatorialists? Amongst those families considered are unlabelled graphs, first order one properties, Hamiltonian graphs, graphs with cliques of specified order, and k-colourable graphs. Some related work is also included, which compares the listing problem with the difficulty of solving the existence problem, the construction problem, the random sampling problem, and the counting problem. In particular, the difficulty of evaluating Polya's cycle polynomial is demonstrated.
It has long been recognized that there are fascinating connections between cod ing theory, cryptology, and combinatorics. Therefore it seemed desirable to us to organize a conference that brings together experts from these three areas for a fruitful exchange of ideas. We decided on a venue in the Huang Shan (Yellow Mountain) region, one of the most scenic areas of China, so as to provide the additional inducement of an attractive location. The conference was planned for June 2003 with the official title Workshop on Coding, Cryptography and Combi natorics (CCC 2003). Those who are familiar with events in East Asia in the first half of 2003 can guess what happened in the end, namely the conference had to be cancelled in the interest of the health of the participants. The SARS epidemic posed too serious a threat. At the time of the cancellation, the organization of the conference was at an advanced stage: all invited speakers had been selected and all abstracts of contributed talks had been screened by the program committee. Thus, it was de cided to call on all invited speakers and presenters of accepted contributed talks to submit their manuscripts for publication in the present volume. Altogether, 39 submissions were received and subjected to another round of refereeing. After care ful scrutiny, 28 papers were accepted for publication."
The self-avoiding walk is a mathematical model that has important applications in statistical mechanics and polymer science. In spite of its simple definition a path on a lattice that does not visit the same site more than once it is difficult to analyze mathematically. "TheSelf-Avoiding Walk"provides the firstunified account of the known rigorous results for the self-avoiding walk, with particular emphasis on its critical behavior. Its goals are to give an account of the current mathematical understanding of the model, to indicate some of the applications of the concept in physics and in chemistry, and to give an introduction to some of the nonrigorous methods used in those fields. Topics covered in the bookinclude: the lace expansion and its application to the self-avoiding walk in more than four dimensions where most issues are now resolved; an introduction to the nonrigorous scaling theory; classical work of Hammersley and others; a new exposition of Kesten s pattern theorem and its consequences; a discussion of the decay of the two-point function and its relation to probabilistic renewal theory; analysis of Monte Carlo methods that have been used to study the self-avoiding walk; the role of the self-avoiding walk in physical and chemical applications. Methods from combinatorics, probability theory, analysis, and mathematical physics play important roles. The book is highly accessible to both professionals and graduate students in mathematics, physics, and chemistry. "
This uniquely authoritative and comprehensive handbook is the first to cover the vast field of formal languages, as well as its traditional and most recent applications to such diverse areas as linguistics, developmental biology, computer graphics, cryptology, molecular genetics, and programming languages. No other work comes even close to the scope of this one. The editors are extremely well-known theoretical computer scientists, and each individual topic is presented by the leading authorities in the particular field. The maturity of the field makes it possible to include a historical perspective in many presentations. The work is divided into three volumes, which may be purchased as a set.
Combinatorics as a branch of mathematics studies the arts of counting. Enumeration occupies the foundation of combinatorics with a large range of applications not only in mathematics itself but also in many other disciplines. It is too broad a task to write a book to show the deep development in every corner from this aspect. This monograph is intended to provide a unified theory for those related to the enumeration of maps. For enumerating maps the first thing we have to know is the sym metry of a map. Or in other words, we have to know its automorphism group. In general, this is an interesting, complicated, and difficult problem. In order to do this, the first problem we meet is how to make a map considered without symmetry. Since the beginning of sixties when Tutte found a way of rooting on a map, the problem has been solved. This forms the basis of the enumerative theory of maps. As soon as the problem without considering the symmetry is solved for one kind of map, the general problem with symmetry can always, in principle, be solved from what we have known about the automorphism of a polyhedron, a synonym for a map, which can be determined efficiently according to another monograph of the present author Liu58]."
Every year there is at least one combinatorics problem in each of the major international mathematical olympiads. These problems can only be solved with a very high level of wit and creativity. This book explains all the problem-solving techniques necessary to tackle these problems, with clear examples from recent contests. It also includes a large problem section for each topic, including hints and full solutions so that the reader can practice the material covered in the book. The material will be useful not only to participants in the olympiads and their coaches but also in university courses on combinatorics.
This volume contains survey articles based on the invited lectures given at the Twenty-second British Combinatorial Conference, held in July 2009 at the University of St Andrews. This biennial conference is a well-established international event, with speakers from all over the world. By its nature this volume provides an up-to-date overview of current research activity in several areas of combinatorics, including graph theory, design theory and packing problems. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world s foremost researchers in their fields, and here they summarize existing results, and give a unique preview of the most recent developments. The book provides a valuable survey of the present state of knowledge in combinatorics. It will be useful to research workers and advanced graduate students, primarily in mathematics but also in computer science, statistics and engineering.
Visualization and mathematics have begun a fruitful relationship,
establishing links between problems and solutions of both fields.
In some areas of mathematics, like differential geometry and
numerical mathematics, visualization techniques are applied with
great success. However, visualization methods are relying heavily
on mathematical concepts.
"Lectures on Finitely Generated Solvable Groups" are based on the Topics in Group Theory" course focused on finitely generated solvable groups that was given by Gilbert G. Baumslag at the Graduate School and University Center of the City University of New York. While knowledge about finitely generated nilpotent groups is extensive, much less is known about the more general class of solvable groups containing them. The study of finitely generated solvable groups involves many different threads; thereforethese notes contain discussions on HNN extensions; amalgamated and wreath products; and other concepts from combinatorial group theory as well as commutative algebra. Along with Baumslag s Embedding Theorem for Finitely Generated Metabelian Groups, two theorems of Bieri and Strebel are presented to provide a solid foundation for understanding the fascinating class of finitely generated solvable groups. Examples are also supplied, which help illuminate many of the key concepts contained in the notes. Requiring only a modest initial group theory background from graduate and post-graduate students, these notes provide a field guide to the class of finitely generated solvable groups froma combinatorial group theory perspective. "
This book contains a detailed mathematical analysis of the variational approach to image restoration based on the minimization of the total variation submitted to the constraints given by the image acquisition model. This model, initially introduced by Rudin, Osher, and Fatemi, had a strong influence in the development of variational methods for image denoising and restoration, and pioneered the use of the BV model in image processing. After a full analysis of the model, the minimizing total variation flow is studied under different boundary conditions, and its main qualitative properties are exhibited. In particular, several explicit solutions of the denoising problem are computed.
'MathPhys Odyssey 2001' will serve as an excellent reference text for mathematical physicists and graduate students in a number of areas.; Kashiwara/Miwa have a good track record with both SV and Birkhauser.
The articles collected in this volume represent the contributions presented at the IMA workshop on "Dynamics of Algorithms" which took place in November 1997. The workshop was an integral part of the 1997 -98 IMA program on "Emerging Applications of Dynamical Systems." The interaction between algorithms and dynamical systems is mutually beneficial since dynamical methods can be used to study algorithms that are applied repeatedly. Convergence, asymptotic rates are indeed dynamical properties. On the other hand, the study of dynamical systems benefits enormously from having efficient algorithms to compute dynamical objects.
Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.
Efficient transfer between science and society is crucial for their future development. The rapid progress of information technology and computer systems offers a large potential and new perspectives for solving complex problems. Mathematical modelling and simulation have become important tools not only in scientific investigations but also in analysing, planning and controlling technological and economic processes. Mathematics, imbedded in an interdisciplinary concept, has become a key technology. The book covers the results of a variety of major projects in industrial mathematics following an initiative of the German Federal Ministry of Education and Research. All projects are collaborations of industrial companies and university-based researchers, and range from automotive industry to computer technology and medical visualisation. In general, the projects presented in this volume prove that new mathematical ideas and methods can be decisive for the solution of industrial and economic problems.
The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.
'Subdivision' is a way of representing smooth shapes in a computer. A curve or surface (both of which contain an in?nite number of points) is described in terms of two objects. One object is a sequence of vertices, which we visualise as a polygon, for curves, or a network of vertices, which we visualise by drawing the edges or faces of the network, for surfaces. The other object is a set of rules for making denser sequences or networks. When applied repeatedly, the denser and denser sequences are claimed to converge to a limit, which is the curve or surface that we want to represent. This book focusses on curves, because the theory for that is complete enough that a book claiming that our understanding is complete is exactly what is needed to stimulate research proving that claim wrong. Also because there are already a number of good books on subdivision surfaces. The way in which the limit curve relates to the polygon, and a lot of interesting properties of the limit curve, depend on the set of rules, and this book is about how one can deduce those properties from the set of rules, and how one can then use that understanding to construct rules which give the properties that one wants. |
You may like...
Graphs and Discrete Dirichlet Spaces
Matthias Keller, Daniel Lenz, …
Hardcover
R3,992
Discovery Miles 39 920
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,261
Discovery Miles 22 610
Algebraic Number Theory and Fermat's…
Ian Stewart, David Tall
Paperback
R1,230
Discovery Miles 12 300
Research Trends in Graph Theory and…
Daniela Ferrero, Leslie Hogben, …
Hardcover
R3,259
Discovery Miles 32 590
Advanced Studies in Behaviormetrics and…
Tadashi Imaizumi, Atsuho Nakayama, …
Hardcover
R3,594
Discovery Miles 35 940
Number Theory and Combinatorics - A…
Bruce M. Landman, Florian Luca, …
Hardcover
R5,400
Discovery Miles 54 000
|