Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
Taking into account the various criss-crossing among mathematical subject, Physical Combinatorics presents new results and exciting ideas from three viewpoints; representation theory, integrable models, and combinatorics. This work is concerned with combinatorial aspects arising in the theory of exactly solvable models and representation theory. Recent developments in integrable models reveal an unexpected link between representation theory and statistical mechanics through combinatorics.
Are people ever rational? Consider this: You auction off a one-dollar bill to the highest bidder, but you set the rules so that the second highest bidder also has to pay the amount of his last bid, even though he gets nothing. Would people ever enter such an auction? Not only do they, but according to Martin Shubik, the game's inventor, the average winning bid (for a dollar, remember) is $3.40. Many winners report that they bid so high only because their opponent "went completely crazy." This game lies at the intersection of three subjects of eternal fascination: human psychology, morality, and John von Neumann's game theory. Hungarian game-theorist Laszlo Mero introduces us to the basics of game theory, including such concepts as zero-sum games, Prisoner's Dilemma and the origins of altruism; shows how game theory is applicable to fields ranging from physics to politics; and explores the role of rational thinking in the context of many different kinds of thinking. This fascinating, urbane book will interest everyone who wonders what mathematics can tell us about the human condition.
"Data Correcting Approaches in Combinatorial Optimization" focuses on algorithmic applications of thewell known polynomially solvable special cases of computationally intractable problems. The purpose of this text is to design practically efficient algorithms for solving wide classes of combinatorial optimization problems. Researches, students and engineers will benefit from new bounds and branching rules in development efficient branch-and-bound type computational algorithms. This book examines applications for solving the Traveling Salesman Problem and its variations, Maximum Weight Independent Set Problem, Different Classes of Allocation and Cluster Analysis as well as some classes of Scheduling Problems. Data Correcting Algorithms in Combinatorial Optimization introduces the data correcting approach to algorithms which provide an answer to the following questions: how to construct a bound to the original intractable problem and findwhich element of the corrected instance one should branch such that the total size of search tree will be minimized. The PC time needed for solving intractable problems will be adjusted with the requirements for solving real world problems. "
This volume contains papers which are based primarily on talks given at an inter national conference on Algorithmic Problems in Groups and Semigroups held at the University of Nebraska-Lincoln from May ll-May 16, 1998. The conference coincided with the Centennial Celebration of the Department of Mathematics and Statistics at the University of Nebraska-Lincoln on the occasion of the one hun dredth anniversary of the granting of the first Ph.D. by the department. Funding was provided by the US National Science Foundation, the Department of Math ematics and Statistics, and the College of Arts and Sciences at the University of Nebraska-Lincoln, through the College's focus program in Discrete, Experimental and Applied Mathematics. The purpose of the conference was to bring together researchers with interests in algorithmic problems in group theory, semigroup theory and computer science. A particularly useful feature of this conference was that it provided a framework for exchange of ideas between the research communities in semigroup theory and group theory, and several of the papers collected here reflect this interac tion of ideas. The papers collected in this volume represent a cross section of some of the results and ideas that were discussed in the conference. They reflect a synthesis of overlapping ideas and techniques stimulated by problems concerning finite monoids, finitely presented mono ids, finitely presented groups and free groups.
Recently, a variety ofresults on the complexitystatusofthegraph isomorphism problem has been obtained. These results belong to the so-called structural part of Complexity Theory. Our idea behind this book is to summarize such results which might otherwise not be easily accessible in the literature, and also, to give the reader an understanding of the aims and topics in Structural Complexity Theory, in general. The text is basically self contained; the only prerequisite for reading it is some elementary knowledge from Complexity Theory and Probability Theory. It can be used to teach a seminar or a monographic graduate course, but also parts of it (especially Chapter 1) provide a source of examples for a standard graduate course on Complexity Theory. Many people have helped us in different ways III the process of writing this book. Especially, we would like to thank V. Arvind, R.V. Book, E. May ordomo, and the referee who gave very constructive comments. This book project was especially made possible by a DAAD grant in the "Acciones In tegrada" program. The third author has been supported by the ESPRIT project ALCOM-II."
This book, dedicated to the memory of Gian-Carlo Rota, is the result of a collaborative effort by his friends, students and admirers. Rota was one of the great thinkers of our times, innovator in both mathematics and phenomenology. I feel moved, yet touched by a sense of sadness, in presenting this volume of work, despite the fear that I may be unworthy of the task that befalls me. Rota, both the scientist and the man, was marked by a generosity that knew no bounds. His ideas opened wide the horizons of fields of research, permitting an astonishing number of students from all over the globe to become enthusiastically involved. The contagious energy with which he demonstrated his tremendous mental capacity always proved fresh and inspiring. Beyond his renown as gifted scientist, what was particularly striking in Gian-Carlo Rota was his ability to appreciate the diverse intellectual capacities of those before him and to adapt his communications accordingly. This human sense, complemented by his acute appreciation of the importance of the individual, acted as a catalyst in bringing forth the very best in each one of his students. Whosoever was fortunate enough to enjoy Gian-Carlo Rota's longstanding friendship was most enriched by the experience, both mathematically and philosophically, and had occasion to appreciate son cote de bon vivant. The book opens with a heartfelt piece by Henry Crapo in which he meticulously pieces together what Gian-Carlo Rota's untimely demise has bequeathed to science.
1. Introduction . 1 2. Areas and Angles . . 6 3. Tessellations and Symmetry 14 4. The Postulate of Closest Approach 28 5. The Coexistence of Rotocenters 36 6. A Diophantine Equation and its Solutions 46 7. Enantiomorphy. . . . . . . . 57 8. Symmetry Elements in the Plane 77 9. Pentagonal Tessellations . 89 10. Hexagonal Tessellations 101 11. Dirichlet Domain 106 12. Points and Regions 116 13. A Look at Infinity . 122 14. An Irrational Number 128 15. The Notation of Calculus 137 16. Integrals and Logarithms 142 17. Growth Functions . . . 149 18. Sigmoids and the Seventh-year Trifurcation, a Metaphor 159 19. Dynamic Symmetry and Fibonacci Numbers 167 20. The Golden Triangle 179 21. Quasi Symmetry 193 Appendix I: Exercise in Glide Symmetry . 205 Appendix II: Construction of Logarithmic Spiral . 207 Bibliography . 210 Index . . . . . . . . . . . . . . . . . . . . 225 Concepts and Images is the result of twenty years of teaching at Harvard's Department of Visual and Environmental Studies in the Carpenter Center for the Visual Arts, a department devoted to turning out students articulate in images much as a language department teaches reading and expressing one self in words. It is a response to our students' requests for a "handout" and to l our colleagues' inquiries about the courses: Visual and Environmental Studies 175 (Introduction to Design Science), YES 176 (Synergetics, the Structure of Ordered Space), Studio Arts 125a (Design Science Workshop, Two-Dimension al), Studio Arts 125b (Design Science Workshop, Three-Dimensional),2 as well as my freshman seminars on Structure in Science and Art."
The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C).
The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in R1d will suffice."
This second edition includes two new chapters: one on domination in graphs and the other on the spectral properties of graphs, the latter including a discussion on graph energy. The chapter on graph colorings has been enlarged, covering additional topics such as homomorphisms and colorings and the uniqueness of the Mycielskian up to isomorphism. This book also introduces several interesting topics such as Dirac's theorem on k-connected graphs, Harary-Nashwilliam's theorem on the hamiltonicity of line graphs, Toida-McKee's characterization of Eulerian graphs, the Tutte matrix of a graph, Fournier's proof of Kuratowski's theorem on planar graphs, the proof of the nonhamiltonicity of the Tutte graph on 46 vertices, and a concrete application of triangulated graphs.
How do you convey to your students, colleagues and friends some of the beauty of the kind of mathematics you are obsessed with? If you are a mathematician interested in finite or topological geometry and combinatorial designs, you could start by showing them some of the (400+) pictures in the "picture book". Pictures are what this book is all about; original pictures of everybody's favorite geometries such as configurations, projective planes and spaces, circle planes, generalized polygons, mathematical biplanes and other designs which capture much of the beauty, construction principles, particularities, substructures and interconnections of these geometries. The level of the text is suitable for advanced undergraduates and graduate students. Even if you are a mathematician who just wants some interesting reading you will enjoy the author's very original and comprehensive guided tour of small finite geometries and geometries on surfaces This guided tour includes lots of sterograms of the spatial models, games and puzzles and instructions on how to construct your own pictures and build some of the spatial models yourself.
This volume is a sequel to our 1996 compilation, Computational and Constructive Design Theory. Again we concentrate on two closely re lated aspects of the study of combinatorial designs: design construction and computer-aided study of designs. There are at least three classes of constructive problems in design theory. The first type of problem is the construction of a specific design. This might arise because that one particular case is an exception to a general rule, the last remaining case of a problem, or the smallest unknown case. A good example is the proof that there is no projective plane of parameter 10. In that case the computations involved were not different in kind from those which have been done by human brains without electronic assistance; they were merely longer. Computers have also been useful in the study of combinatorial spec trum problems: if a class of design has certain parameters, what is the set of values that the parameters can realize? In many cases, there is a recursive construction, so that the existence of a small number of "starter" designs leads to the construction of infinite classes of designs, and computers have proven very useful in finding "starter" designs.
The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Buchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and again within each chapter the author starts at an elementary level, giving careful explanations and numerous examples and exercises, and then leads up to the research level. In this way he covers the basic theory as well as many nonstandard subjects. Thus the book serves as a textbook for both the beginner and the advances student, and also as a rich source for the expert.
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
From the reviews: "Bela Bollobas introductory course on graph theory deserves to be considered as a watershed in the development of this theory as a serious academic subject. ... The book has chapters on electrical networks, flows, connectivity and matchings, extremal problems, colouring, Ramsey theory, random graphs, and graphs and groups. Each chapter starts at a measured and gentle pace. Classical results are proved and new insight is provided, with the examples at the end of each chapter fully supplementing the text... Even so this allows an introduction not only to some of the deeper results but, more vitally, provides outlines of, and firm insights into, their proofs. Thus in an elementary text book, we gain an overall understanding of well-known standard results, and yet at the same time constant hints of, and guidelines into, the higher levels of the subject. It is this aspect of the book which should guarantee it a permanent place in the literature." #Bulletin of the London Mathematical Society#1
The theory of matroids is unique in the extent to which it connects such disparate branches of combinatorial theory and algebra as graph theory, lattice theory, design theory, combinatorial optimization, linear algebra, group theory, ring theory and field theory. Furthermore, matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems. Indeed, matroids are amazingly versatile and the approaches to the subject are varied and numerous. This book is a primer in the basic axioms and constructions of matroids. The contributions by various leaders in the field include chapters on axiom systems, lattices, basis exchange properties, orthogonality, graphs and networks, constructions, maps, semi-modular functions and an appendix on cryptomorphisms. The authors have concentrated on giving a lucid exposition of the individual topics; explanations of theorems are preferred to complete proofs and original work is thoroughly referenced. In addition, exercises are included for each topic.
Professor Rogers has written this economical and logical exposition of the theory of packing and covering at a time when the simplest general results are known and future progress seems likely to depend on detailed and complicated technical developments. The book treats mainly problems in n-dimensional space, where n is larger than 3. The approach is quantative and many estimates for packing and covering densities are obtained. The introduction gives a historical outline of the subject, stating results without proof, and the succeeding chapters contain a systematic account of the general results and their derivation. Some of the results have immediate applications in the theory of numbers, in analysis and in other branches of mathematics, while the quantative approach may well prove to be of increasing importance for further developments.
Shapes are complex objects to apprehend, as mathematical entities, in terms that also are suitable for computerized analysis and interpretation. This volume provides the background that is required for this purpose, including different approaches that can be used to model shapes, and algorithms that are available to analyze them. It explores, in particular, the interesting connections between shapes and the objects that naturally act on them, diffeomorphisms. The book is, as far as possible, self-contained, with an appendix that describes a series of classical topics in mathematics (Hilbert spaces, differential equations, Riemannian manifolds) and sections that represent the state of the art in the analysis of shapes and their deformations. A direct application of what is presented in the book is a branch of the computerized analysis of medical images, called computational anatomy.
nullane de tantis gregibus tibi digna videtur? rara avis in terra nigroque simillima cygno. Juvenal Sat. VI 161, 165. 1966-JNC visits AN at CornelI. An idea emerges. 1968-JNC is at V. c. L. A. for the Logic Year. The Los Angeles ma- script appears. 1970-AN visits JNC at Monash. 1971-The Australian manuscript appears. 1972-JNC visits AN at Cornell. Here is the result. We gratefully acknowledge support from Cornell Vniversity, Vni- versity of California at Los Angeles, Monash Vniversity and National Science Foundation Grants GP 14363, 22719 and 28169. We are deeply indebted to the many people who have helped uso Amongst the mathe- maticians, we are particularly grateful to J. C. E. Dekker, John Myhill, Erik Ellentuck, Peter AczeI, Chris Ash, Charlotte ehell, Ed Eisenberg, Dave Gillam, Bill Gross, Alan Hamilton, Louise Hay, Georg Kreisel, Phil Lavori, Ray Liggett, Al Manaster, Michael D. Morley, Joe Rosen- stein, Graham Sainsbury, Bob Soare and Michael Venning. Last, but by no means least, we thank Anne-Marie Vandenberg, Esther Monroe, Arletta Havlik, Dolores Pendell, and Cathy Stevens and the girls of the Mathematics Department of VCLA in 1968 for hours and hours of excellent typing. Thanksgiving November 1972 J. N. Crossley Ithaca, New Y ork Anil Nerode Contents O. Introduction ...1 Part 1. Categories and Functors 3 1. Categories ...3 2. Morphism Combinatorial Functors 3 3. Combinatorial Functors ...18 Part H. Model Theory . . 18 4. Countable Atomic Models 18 5. Copying . 22 6. Dimension ...26 Part III.
Excellent authors, such as Lovasz, one of the five best combinatorialists in the world; Thematic linking that makes it a coherent collection; Will appeal to a variety of communities, such as mathematics, computer science and operations research
This IMA Volume in Mathematics and its Applications Coding Theory and Design Theory Part II: Design Theory is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizer, Dijen Ray-Chaudhuri, for organizing a workshop which brought together many of the major figures in a variety of research fields in which coding theory and design theory are used. A vner Friedman Willard Miller, Jr. PREFACE Coding Theory and Design Theory are areas of Combinatorics which found rich applications of algebraic structures. Combinatorial designs are generalizations of finite geometries. Probably, the history of Design Theory begins with the 1847 pa per of Reverand T. P. Kirkman "On a problem of Combinatorics," Cambridge and Dublin Math. Journal. The great Statistician R. A. Fisher reinvented the concept of combinatorial 2-design in the twentieth century. Extensive application of alge braic structures for construction of 2-designs (balanced incomplete block designs) can be found in RC. Bose's 1939 Annals of Eugenics paper, "On the construction of balanced incomplete block designs." Coding Theory and Design Theory are closely interconnected. Hamming codes can be found (in disguise) in RC. Bose's 1947 Sankhya paper "Mathematical theory of the symmetrical factorial designs.""
Graph Theory is a part of discrete mathematics characterized by the fact of an extremely rapid development during the last 10 years. The number of graph theoretical paper as well as the number of graph theorists increase very strongly. The main purpose of this book is to show the reader the variety of graph theoretical methods and the relation to combinatorics and to give him a survey on a lot of new results, special methods, and interesting informations. This book, which grew out of contributions given by about 130 authors in honour to the 70th birthday of Gerhard Ringel, one of the pioneers in graph theory, is meant to serve as a source of open problems, reference and guide to the extensive literature and as stimulant to further research on graph theory and combinatorics.
Man wird dem einzelnen nicht gerecht, wenn man es gesondert ins Auge jaftt, ohne seinen Zusammenhang mit dem Ganzen zu beachten und dem Beziehungssystem Rechnung zu tragen, in dem es steht. Thomas Mann Science in general, as well as in each of its individual fields, is a part of human culture. In that sense, this book aims to contribute to uncovering a small part of the connections and relationships which bind image processing, categorized in informatics and technology, with the knowledge accumulated over the years on discrete structures. How does one consider problems, models, mathematical methods and prac- tical applications? How does the search for ideas and the endeavour for know- ledge in the original work of scientists find expression? Is there something to be learnt from science to date for future developments? Such questions have shaped the content and style of this book. Substantial impetus to the discrete theory of image processing was afforded by the work of Rosenfeld and colleagues. Other fruitful sources of ideas con- sidered here are number theoretical problems (GauB, Minkowski) and integral geometric investigations (Blaschke, Santalo). Since the beginning of the 1980s I have strived to build upon these ideas a unified mathematical representation of discrete image processing working together with R.K1ette and P.Hufnagl.
One of the important areas of contemporary combinatorics is Ramsey theory. Ramsey theory is basically the study of structure preserved under partitions. The general philosophy is reflected by its interdisciplinary character. The ideas of Ramsey theory are shared by logicians, set theorists and combinatorists, and have been successfully applied in other branches of mathematics. The whole subject is quickly developing and has some new and unexpected applications in areas as remote as functional analysis and theoretical computer science. This book is a homogeneous collection of research and survey articles by leading specialists. It surveys recent activity in this diverse subject and brings the reader up to the boundary of present knowledge. It covers virtually all main approaches to the subject and suggests various problems for individual research.
This IMA Volume in Mathematics and its Applications Applications of Combinatorics and Graph Theory to the Biological and Social Sciences is based on the proceedings of a workshop which was an integral part of the 1987-88 IMA program on APPLIED COMBINATORICS. We are grateful to the Scientific Committee: Victor Klee (Chairman), Daniel Kleitman, Dijen Ray-Chaudhuri and Dennis Stanton for planning and implementing an exciting and stimulating year long program. We especially thank the Workshop Organizers, Joel Cohen and Fred Roberts, for organizing a workshop which brought together many of the major figures in a variety of research fields connected with the application of combinatorial ideas to the social and biological sciences. A vner Friedman Willard Miller APPLICATIONS OF COMBINATORICS AND GRAPH THEORY TO THE BIOLOGICAL AND SOCIAL SCIENCES: SEVEN FUNDAMENTAL IDEAS FRED S. RoBERTS* Abstract. To set the stage for the other papers in this volume, seven fundamental concepts which arise in the applications of combinatorics and graph theory in the biological and social sciences are described. These ideas are: RNA chains as "words" in a 4 letter alphabet; interval graphs; competition graphs or niche overlap graphs; qualitative stability; balanced signed graphs; social welfare functions; and semiorders. For each idea, some basic results are presented, some recent results are given, and some open problems are mentioned." |
You may like...
Handbook of Research on Advanced…
Madhumangal Pal, Sovan Samanta, …
Hardcover
R7,051
Discovery Miles 70 510
Complex Networks XII - Proceedings of…
Andreia Sofia Teixeira, Diogo Pacheco, …
Hardcover
R4,455
Discovery Miles 44 550
Advanced Studies in Behaviormetrics and…
Tadashi Imaizumi, Atsuho Nakayama, …
Hardcover
R3,594
Discovery Miles 35 940
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,525
Discovery Miles 15 250
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,261
Discovery Miles 22 610
|