![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This book is about graph energy. The authors have included many of the important results on graph energy, such as the complete solution to the conjecture on maximal energy of unicyclic graphs, the Wagner-Heuberger's result on the energy of trees, the energy of random graphs or the approach to energy using singular values. It contains an extensive coverage of recent results and a gradual development of topics and the inclusion of complete proofs from most of the important recent results in the area. The latter fact makes it a valuable reference for researchers looking to get into the field of graph energy, further stimulating it with occasional inclusion of open problems. The book provides a comprehensive survey of all results and common proof methods obtained in this field with an extensive reference section. The book is aimed mainly towards mathematicians, both researchers and doctoral students, with interest in the field of mathematical chemistry.
The primary intent of the book is to introduce an array of beautiful problems in a variety of subjects quickly, pithily and completely rigorously to graduate students and advanced undergraduates. The book takes a number of specific problems and solves them, the needed tools developed along the way in the context of the particular problems. It treats a melange of topics from combinatorial probability theory, number theory, random graph theory and combinatorics. The problems in this book involve the asymptotic analysis of a discrete construct as some natural parameter of the system tends to infinity. Besides bridging discrete mathematics and mathematical analysis, the book makes a modest attempt at bridging disciplines. The problems were selected with an eye toward accessibility to a wide audience, including advanced undergraduate students. The book could be used for a seminar course in which students present the lectures."
Graphs on Surfaces: Dualities, Polynomials, and Knots offers an accessible and comprehensive treatment of recent developments on generalized duals of graphs on surfaces, and their applications. The authors illustrate the interdependency between duality, medial graphs and knots; how this interdependency is reflected in algebraic invariants of graphs and knots; and how it can be exploited to solve problems in graph and knot theory. Taking a constructive approach, the authors emphasize how generalized duals and related ideas arise by localizing classical constructions, such as geometric duals and Tait graphs, and then removing artificial restrictions in these constructions to obtain full extensions of them to embedded graphs. The authors demonstrate the benefits of these generalizations to embedded graphs in chapters describing their applications to graph polynomials and knots. Graphs on Surfaces: Dualities, Polynomials, and Knots also provides a self-contained introduction to graphs on surfaces, generalized duals, topological graph polynomials, and knot polynomials that is accessible both to graph theorists and to knot theorists. Directed at those with some familiarity with basic graph theory and knot theory, this book is appropriate for graduate students and researchers in either area. Because the area is advancing so rapidly, the authors give a comprehensive overview of the topic and include a robust bibliography, aiming to provide the reader with the necessary foundations to stay abreast of the field. The reader will come away from the text convinced of advantages of considering these higher genus analogues of constructions of plane and abstract graphs, and with a good understanding of how they arise.
This book results from a long-term research effort aimed at tackling complex non-standard packing issues which arise in space engineering. The main research objective is to optimize cargo loading and arrangement, in compliance with a set of stringent rules. Complicated geometrical aspects are also taken into account, in addition to balancing conditions based on attitude control specifications. Chapter 1 introduces the class of non-standard packing problems studied. Chapter 2 gives a detailed explanation of a general model for the orthogonal packing of tetris-like items in a convex domain. A number of additional conditions are looked at in depth, including the prefixed orientation of subsets of items, the presence of unusable holes, separation planes and structural elements, relative distance bounds as well as static and dynamic balancing requirements. The relative feasibility sub-problem which is a special case that does not have an optimization criterion is discussed in Chapter 3. This setting can be exploited by introducing an ad hoc objective function, aimed at facilitating the finding of integer-feasible solutions. The third chapter also discusses the issue of tightening the general MIP model by introducing valid inequalities. A MIP-based heuristic approach is developed in Chapter 4, where the basic concept of abstract configuration is presented. Chapter 5 is devoted to experimental results relevant to a real-world application framework. Chapter 6 adopts both extensions of the general MIP model and non-linear formulations to tackle two further non-standard packing issues. The final Chapter 7 presents conclusions and provides insights regarding prospective developments (including non-standard scheduling aspects). Practitioners and researchers interested in advanced optimization model development and solution in the context of logistics, transportation systems, complex structures, manufacturing and electronics will find this book useful. The book can also be used in graduate courses on nonlinear - including global and mixed integer - optimization, as a valuable collection of practically meaningful object packing applications.
Combinatorial games are the strategy games that people like to play, for example chess, Hex, and Go. They differ from economic games in that there are two players who play alternately with no hidden cards and no dice. These games have a mathematical structure that allows players to analyse them in the abstract. Games of No Chance 4 contains the first comprehensive explorations of misere (last player to move loses) games, extends the theory for some classes of normal-play (last player to move wins) games and extends the analysis for some specific games. It includes a tutorial for the very successful approach to analysing misere impartial games and the first attempt at using it for misere partisan games. Hex and Go are featured, as well as new games: Toppling Dominoes and Maze. Updated versions of Unsolved Problems in Combinatorial Game Theory and the Combinatorial Games Bibliography complete the volume.
This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants. This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms. Jaroslav Nesetril is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris. This book is related to the material presented by the first author at ICM 2010.
Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding has still not made its way into "real-life" applications yet. This book sets an ambitious goal: to shift the development of language processing systems to a much more automated setting than previous works. A new approach is defined: what if computers analysed large samples of language data on their own, identifying structural regularities that perform the necessary abstractions and generalisations in order to better understand language in the process? After defining the framework of Structure Discovery and shedding light on the nature and the graphic structure of natural language data, several procedures are described that do exactly this: let the computer discover structures without supervision in order to boost the performance of language technology applications. Here, multilingual documents are sorted by language, word classes are identified, and semantic ambiguities are discovered and resolved without using a dictionary or other explicit human input. The book concludes with an outlook on the possibilities implied by this paradigm and sets the methods in perspective to human computer interaction. The target audience are academics on all levels (undergraduate and graduate students, lecturers and professors) working in the fields of natural language processing and computational linguistics, as well as natural language engineers who are seeking to improve their systems.
This text offers an introduction to error-correcting linear codes for researchers and graduate students in mathematics, computer science and engineering. The book differs from other standard texts in its emphasis on the classification of codes by means of isometry classes. The relevant algebraic are developed rigorously. Cyclic codes are discussed in great detail. In the last four chapters these isometry classes are enumerated, and representatives are constructed algorithmically.
Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.
Covering Walks in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous K nigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and Hamiltonian concepts are examined. Describes several variations of traceable numbers, which provide new frame works for several well-known Hamiltonian concepts and produce interesting new results.
The huge bandwidth of optical fiber was recognized back in the 1970s during the early development of fiber optic technology. For the last two decades, the capacity of experimental and deployed systems has been increasing at a rate of 100-fold each decade-a rate exceeding the increase of integrated circuit speeds. Today, optical communication in the public communication networks has developed from the status of a curiosity into being the dominant technology. Various great challenges arising from the deployment of the wavelength division multiplexing (WDM) have attracted a lot of efforts from many researchers. Indeed, the optical networking has been a fertile ground for both theoretical researches and experimental studies. This monograph presents the contribution from my past and ongoing research in the optical networking area. The works presented in this book focus more on graph-theoretical and algorithmic aspects of optical networks. Although this book is limited to the works by myself and my coauthors, there are many outstanding achievements made by other individuals, which will be cited in many places in this book. Without the inspiration from their efforts, this book would have never been possible. This monograph is divided into four parts: * Multichannel Optical Networking Architectures, * Broadcast-and-Select Passive Optical Networks, * Wavelength-Switched Optical Networks, * SONET/WDM Optical Networks. The first part consists of the first three chapters. Chapter 1 pro vides a brief survey on the networking architectures of optical trans- XVll xvm MULTICHANNEL OPTICAL NETWORKS port networks, optical access networks and optical premise networks.
These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk. The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).
Among the simplest combinatorial designs, triple systems are a natural generalization of graphs and have connections with geometry, algebra, group theory, finite fields, and cyclotomy. Applications of triple systems are found in coding theory, cryptography, computer science, and statistics. In many cases, triple systems provide the prototype for deep results in combinatorial design theory, and a number of important results were first understood in the context of triple systems and then generalized. This book attempts to survey current knowledge on the subject, to gather together common themes, and to provide an accurate portrait of the huge variety of problems and results. It includes representative samples of the major styles of proof technique and a comprehensive bibliography.
Combinatorial Engineering of Decomposable Systems presents a morphological approach to the combinatorial design/synthesis of decomposable systems. Applications involve the following: design (e.g., information systems; user's interfaces; educational courses); planning (e.g., problem-solving strategies; product life cycles; investment); metaheuristics for combinatorial optimization; information retrieval; etc.
The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods."
Modern algorithmic techniques for summation, most of which were introduced in the 1990s, are developed here and carefully implemented in the computer algebra system Maple (TM). The algorithms of Fasenmyer, Gosper, Zeilberger, Petkovsek and van Hoeij for hypergeometric summation and recurrence equations, efficient multivariate summation as well as q-analogues of the above algorithms are covered. Similar algorithms concerning differential equations are considered. An equivalent theory of hyperexponential integration due to Almkvist and Zeilberger completes the book. The combination of these results gives orthogonal polynomials and (hypergeometric and q-hypergeometric) special functions a solid algorithmic foundation. Hence, many examples from this very active field are given. The materials covered are suitable for an introductory course on algorithmic summation and will appeal to students and researchers alike.
This monograph provides a detailed review of the state-of-the-art theoretical (analytical and numerical) methodologies for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar, inclined substrate. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches, and long-wave expansions. Whenever possible, the link between theory and experiments is illustrated and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of the underlying basic physics. The book will be of particular interest to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program; researchers working on both applied and fundamental theoretical and experimental aspects of thin film flows; and engineers and technologists dealing with processes involving thin films, either isothermal or heated. Topics covered include: Detailed derivations of governing equations and wall and free-surface boundary conditions for free-surface thin film flows in the presence of thermocapillary Marangoni effect; linear stability including Orr-Sommerfeld, absolute/convective instability and Floquet analysis of periodic waves; strongly nonlinear analysis including construction of bifurcation diagrams of periodic and solitary waves; weakly nonlinear prototypes such as Kuramoto-Sivashinsky equation; validity domain of the long-wave expansions; kinematic/dynamic waves, connection with shallow water and river flows/hydraulic jumps; dynamical systems approach, local and global bifurcations, homoclinicity and conditions for periodic, subsidiary and secondary homoclinic orbits; modulation instability of solitary waves to transverse perturbations; transition to two-dimensional solitary waves and interaction of two-dimensional solitary waves; and substrate heating and competition between solitary waves and rivulet formation in free-surface flows over heated substrates. Tutorials and details of computational methodologies including computer programs: Solution of the Orr-Sommerfeld eigenvalue problem; computational search via continuation for traveling wave solutions and their bifurcations; computation of systems of nonlinear pde s using finite differences; spectral representation and aliasing. "
Transportation problems belong to the domains mathematical program ming and operations research. Transportation models are widely applied in various fields. Numerous concrete problems (for example, assignment and distribution problems, maximum-flow problem, etc. ) are formulated as trans portation problems. Some efficient methods have been developed for solving transportation problems of various types. This monograph is devoted to transportation problems with minimax cri teria. The classical (linear) transportation problem was posed several decades ago. In this problem, supply and demand points are given, and it is required to minimize the transportation cost. This statement paved the way for numerous extensions and generalizations. In contrast to the original statement of the problem, we consider a min imax rather than a minimum criterion. In particular, a matrix with the minimal largest element is sought in the class of nonnegative matrices with given sums of row and column elements. In this case, the idea behind the minimax criterion can be interpreted as follows. Suppose that the shipment time from a supply point to a demand point is proportional to the amount to be shipped. Then, the minimax is the minimal time required to transport the total amount. It is a common situation that the decision maker does not know the tariff coefficients. In other situations, they do not have any meaning at all, and neither do nonlinear tariff objective functions. In such cases, the minimax interpretation leads to an effective solution.
The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.
In the spectrum of mathematics, graph theory which studies a mathe matical structure on a set of elements with a binary relation, as a recognized discipline, is a relative newcomer. In recent three decades the exciting and rapidly growing area of the subject abounds with new mathematical devel opments and significant applications to real-world problems. More and more colleges and universities have made it a required course for the senior or the beginning postgraduate students who are majoring in mathematics, computer science, electronics, scientific management and others. This book provides an introduction to graph theory for these students. The richness of theory and the wideness of applications make it impossi ble to include all topics in graph theory in a textbook for one semester. All materials presented in this book, however, I believe, are the most classical, fundamental, interesting and important. The method we deal with the mate rials is to particularly lay stress on digraphs, regarding undirected graphs as their special cases. My own experience from teaching out of the subject more than ten years at University of Science and Technology of China (USTC) shows that this treatment makes hardly the course di: fficult, but much more accords with the essence and the development trend of the subject."
This book shows how the Bayesian Approach (BA) improves well known heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some impor tant family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other lan guages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization prob lems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of dis crete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribu tion on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Dif ferent examples illustrate different points of the general subject. How ever, one can consider each example separately, too."
At first sight discrete and fractional programming techniques appear to be two com pletely unrelated fields in operations research. We will show how techniques in both fields can be applied separately and in a combined form to particular models in location analysis. Location analysis deals with the problem of deciding where to locate facilities, con sidering the clients to be served, in such a way that a certain criterion is optimized. The term "facilities" immediately suggests factories, warehouses, schools, etc., while the term "clients" refers to depots, retail units, students, etc. Three basic classes can be identified in location analysis: continuous location, network location and dis crete location. The differences between these fields arise from the structure of the set of possible locations for the facilities. Hence, locating facilities in the plane or in another continuous space corresponds to a continuous location model while finding optimal facility locations on the edges or vertices of a network corresponds to a net work location model. Finally, if the possible set of locations is a finite set of points we have a discrete location model. Each of these fields has been actively studied, arousing intense discussion on the advantages and disadvantages of each of them. The usual requirement that every point in the plane or on the network must be a candidate location point, is one of the mostly used arguments "against" continuous and network location models."
This book constitutes the thoroughly refereed post-workshop proceedings of the 24th International Workshop on Combinatorial Algorithms, IWOCA 2013, held in Rouen, France, in July 2013. The 33 revised full papers presented together with 10 short papers and 5 invited talks were carefully reviewed and selected from a total of 91 submissions. The papers are organized in topical sections on algorithms on graphs; algorithms on strings; discrete geometry and satisfiability.
This book is a thoroughly revised result, updated to mid-1995, of the NATO Advanced Research Workshop on "Intelligent Learning Environments: the case of geometry", held in Grenoble, France, November 13-16, 1989. The main aim of the workshop was to foster exchanges among researchers who were concerned with the design of intelligent learning environments for geometry. The problem of student modelling was chosen as a central theme of the workshop, insofar as geometry cannot be reduced to procedural knowledge and because the significance of its complexity makes it of interest for intelligent tutoring system (ITS) development. The workshop centred around the following themes: modelling the knowledge domain, modelling student knowledge, design ing "didactic interaction", and learner control. This book contains revised versions of the papers presented at the workshop. All of the chapters that follow have been written by participants at the workshop. Each formed the basis for a scheduled presentation and discussion. Many are suggestive of research directions that will be carried out in the future. There are four main issues running through the papers presented in this book: * knowledge about geometry is not knowledge about the real world, and materialization of geometrical objects implies a reification of geometry which is amplified in the case of its implementation in a computer, since objects can be manipulated directly and relations are the results of actions (Laborde, Schumann). This aspect is well exemplified by research projects focusing on the design of geometric microworlds (Guin, Laborde).
Mathematics and Computer Science III contains invited and contributed papers on combinatorics, random graphs and networks, algorithms analysis and trees, branching processes, constituting the Proceedings of the Third International Colloquium on Mathematics and Computer Science, held in Vienna in September 2004. It addresses a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers. |
![]() ![]() You may like...
Sometimes Naughty-Always Loved - Mary…
Arleen Alleman, Cedric Taylor
Hardcover
R529
Discovery Miles 5 290
|