Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
Since the early eighteenth century, the theory of networks and graphs has matured into an indispensable tool for describing countless real-world phenomena. However, the study of large-scale features of a network often requires unrealistic limits, such as taking the network size to infinity or assuming a continuum. These asymptotic and analytic approaches can significantly diverge from real or simulated networks when applied at the finite scales of real-world applications. This book offers an approach to overcoming these limitations by introducing operator graph theory, an exact, non-asymptotic set of tools combining graph theory with operator calculus. The book is intended for mathematicians, physicists, and other scientists interested in discrete finite systems and their graph-theoretical description, and in delineating the abstract algebraic structures that characterise such systems. All the necessary background on graph theory and operator calculus is included for readers to understand the potential applications of operator graph theory.
Networked computers are ubiquitous, and are subject to attack, misuse, and abuse. One method to counteracting this cyber threat is to provide security analysts with better tools to discover patterns, detect anomalies, identify correlations, and communicate their findings. Visualization for computer security (VizSec) researchers and developers are doing just that. VizSec is about putting robust information visualization tools into the hands of human analysts to take advantage of the power of the human perceptual and cognitive processes in solving computer security problems. This volume collects the papers presented at the 4th International Workshop on Computer Security - VizSec 2007.
This book collects original peer-reviewed contributions to the conferences organised by the international research network "Minimal surfaces: Integrable Systems and Visualization" financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.
This book illustrates how modern mathematical wavelet transform techniques offer fresh insights into the complex behavior of neural systems at different levels: from the microscopic dynamics of individual cells to the macroscopic behavior of large neural networks. It also demonstrates how and where wavelet-based mathematical tools can provide an advantage over classical approaches used in neuroscience. The authors well describe single neuron and populational neural recordings. This 2nd edition discusses novel areas and significant advances resulting from experimental techniques and computational approaches developed since 2015, and includes three new topics: * Detection of fEPSPs in multielectrode LFPs recordings. * Analysis of Visual Sensory Processing in the Brain and BCI for Human Attention Control; * Analysis and Real-time Classification of Motor-related EEG Patterns; The book is a valuable resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduate students specializing in these and related areas.
Simulating for a crisis is far more than creating a simulation of a crisis situation. In order for a simulation to be useful during a crisis, it should be created within the space of a few days to allow decision makers to use it as quickly as possible. Furthermore, during a crisis the aim is not to optimize just one factor, but to balance various, interdependent aspects of life. In the COVID-19 crisis, decisions had to be made concerning e.g. whether to close schools and restaurants, and the (economic) consequences of a 3 or 4-week lock-down had to be considered. As such, rather than one simulation focusing on a very limited aspect, a framework allowing the simulation of several different scenarios focusing on different aspects of the crisis was required. Moreover, the results of the simulations needed to be easily understandable and explainable: if a simulation indicates that closing schools has no effect, this can only be used if the decision makers can explain why this is the case. This book describes how a simulation framework was created for the COVID-19 crisis, and demonstrates how it was used to simulate a wide range of scenarios that were relevant for decision makers at the time. It also discusses the usefulness of the approach, and explains the decisions that had to be made along the way as well as the trade-offs. Lastly, the book examines the lessons learned and the directions for the further development of social simulation frameworks to make them better suited to crisis situations, and to foster a more resilient society.
Combinatorial theory is one of the fastest growing areas of modern mathematics. Focusing on a major part of this subject, Introduction to Combinatorial Designs, Second Edition provides a solid foundation in the classical areas of design theory as well as in more contemporary designs based on applications in a variety of fields. After an overview of basic concepts, the text introduces balanced designs and finite geometries. The author then delves into balanced incomplete block designs, covering difference methods, residual and derived designs, and resolvability. Following a chapter on the existence theorem of Bruck, Ryser, and Chowla, the book discusses Latin squares, one-factorizations, triple systems, Hadamard matrices, and Room squares. It concludes with a number of statistical applications of designs. Reflecting recent results in design theory and outlining several applications, this new edition of a standard text presents a comprehensive look at the combinatorial theory of experimental design. Suitable for a one-semester course or for self-study, it will prepare readers for further exploration in the field. To access supplemental materials for this volume, visit the author's website at http: //www.math.siu.edu/Wallis/designs
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open questions and suggestions for further reading.
Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: * A survey of computational approaches to reconstruct and partition biological networks * An introduction to complex networks measures, statistical properties, and models * Modeling for evolving biological networks * The structure of an evolving random bipartite graph * Density-based enumeration in structured data * Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.
Strongly regular graphs lie at the intersection of statistical design, group theory, finite geometry, information and coding theory, and extremal combinatorics. This monograph collects all the major known results together for the first time in book form, creating an invaluable text that researchers in algebraic combinatorics and related areas will refer to for years to come. The book covers the theory of strongly regular graphs, polar graphs, rank 3 graphs associated to buildings and Fischer groups, cyclotomic graphs, two-weight codes and graphs related to combinatorial configurations such as Latin squares, quasi-symmetric designs and spherical designs. It gives the complete classification of rank 3 graphs, including some new constructions. More than 100 graphs are treated individually. Some unified and streamlined proofs are featured, along with original material including a new approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces.
This book contains contributions presented at the 12th International Conference on Complex Networks (CompleNet), 24-26 May 2021. CompleNet is an international conference on complex networks that brings together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. CompleNet is a venue to discuss ideas and findings about all types networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
This book presents a printed testimony for the fact that George Andrews, one of the world's leading experts in partitions and q-series for the last several decades, has passed the milestone age of 80. To honor George Andrews on this occasion, the conference "Combinatory Analysis 2018" was organized at the Pennsylvania State University from June 21 to 24, 2018. This volume comprises the original articles from the Special Issue "Combinatory Analysis 2018 - In Honor of George Andrews' 80th Birthday" resulting from the conference and published in Annals of Combinatorics. In addition to the 37 articles of the Andrews 80 Special Issue, the book includes two new papers. These research contributions explore new grounds and present new achievements, research trends, and problems in the area. The volume is complemented by three special personal contributions: "The Worlds of George Andrews, a daughter's take" by Amy Alznauer, "My association and collaboration with George Andrews" by Krishna Alladi, and "Ramanujan, his Lost Notebook, its importance" by Bruce Berndt. Another aspect which gives this Andrews volume a truly unique character is the "Photos" collection. In addition to pictures taken at "Combinatory Analysis 2018", the editors selected a variety of photos, many of them not available elsewhere: "Andrews in Austria", "Andrews in China", "Andrews in Florida", "Andrews in Illinois", and "Andrews in India". This volume will be of interest to researchers, PhD students, and interested practitioners working in the area of Combinatory Analysis, q-Series, and related fields.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the IX International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2020). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.
Paul Erdos published more papers during his lifetime than any other mathematician, especially in discrete mathematics. He had a nose for beautiful, simply-stated problems with solutions that have far-reaching consequences across mathematics. This captivating book, written for students, provides an easy-to-understand introduction to discrete mathematics by presenting questions that intrigued Erdos, along with his brilliant ways of working toward their answers. It includes young Erdos's proof of Bertrand's postulate, the Erdos-Szekeres Happy End Theorem, De Bruijn-Erdos theorem, Erdos-Rado delta-systems, Erdos-Ko-Rado theorem, Erdos-Stone theorem, the Erdos-Renyi-Sos Friendship Theorem, Erdos-Renyi random graphs, the Chvatal-Erdos theorem on Hamilton cycles, and other results of Erdos, as well as results related to his work, such as Ramsey's theorem or Deza's theorem on weak delta-systems. Its appendix covers topics normally missing from introductory courses. Filled with personal anecdotes about Erdos, this book offers a behind-the-scenes look at interactions with the legendary collaborator.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the IX International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2020). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.
This monograph discusses decision making methods under bipolar fuzzy graphical models with the aim of overcoming the lack of mathematical approach towards bipolar information-positive and negative. It investigates the properties of bipolar fuzzy graphs, their distance functions, and concept of their isomorphism. It presents certain notions, including irregular bipolar fuzzy graphs, domination in bipolar fuzzy graphs, bipolar fuzzy circuits, energy in bipolar fuzzy graphs, bipolar single-valued neutrosophic competition graphs, and bipolar neutrosophic graph structures. This book also presents the applications of mentioned concepts to real-world problems in areas of product manufacturing, international relations, psychology, global terrorism and more, making it valuable for researchers, computer scientists, social scientists and alike.
This collection of peer-reviewed workshop papers provides comprehensive coverage of cutting-edge research into topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The book also addresses core research challenges such as the representation of large and complex datasets, and integrating numerical methods with robust combinatorial algorithms. In keeping with the focus of the TopoInVis 2017 Workshop, the contributions reflect the latest advances in finding experimental solutions to open problems in the sector. They provide an essential snapshot of state-of-the-art research, helping researchers to keep abreast of the latest developments and providing a basis for future work. Gathering papers by some of the world's leading experts on topological techniques, the book represents a valuable contribution to a field of growing importance, with applications in disciplines ranging from engineering to medicine.
In the present era dominated by computers, graph theory has come into its own as an area of mathematics, prominent for both its theory and its applications. One of the richest and most studied types of graph structures is that of the line graph, where the focus is more on the edges of a graph than on the vertices. A subject worthy of exploration in itself, line graphs are closely connected to other areas of mathematics and computer science. This book is unique in its extensive coverage of many areas of graph theory applicable to line graphs. The book has three parts. Part I covers line graphs and their properties, while Part II looks at features that apply specifically to directed graphs, and Part III presents generalizations and variations of both line graphs and line digraphs. Line Graphs and Line Digraphs is the first comprehensive monograph on the topic. With minimal prerequisites, the book is accessible to most mathematicians and computer scientists who have had an introduction graph theory, and will be a valuable reference for researchers working in graph theory and related fields.
Constraint Satisfaction Problems (CSPs) are natural computational problems that appear in many areas of theoretical computer science. Exploring which CSPs are solvable in polynomial time and which are NP-hard reveals a surprising link with central questions in universal algebra. This monograph presents a self-contained introduction to the universal-algebraic approach to complexity classification, treating both finite and infinite-domain CSPs. It includes the required background from logic and combinatorics, particularly model theory and Ramsey theory, and explains the recently discovered link between Ramsey theory and topological dynamics and its implications for CSPs. The book will be of interest to graduate students and researchers in theoretical computer science and to mathematicians in logic, combinatorics, and dynamics who wish to learn about the applications of their work in complexity theory.
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmuller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
This book describes a set of novel statistical algorithms designed to infer functional connectivity of large-scale neural assemblies. The algorithms are developed with the aim of maximizing computational accuracy and efficiency, while faithfully reconstructing both the inhibitory and excitatory functional links. The book reports on statistical methods to compute the most significant functional connectivity graph, and shows how to use graph theory to extract the topological features of the computed network. A particular feature is that the methods used and extended at the purpose of this work are reported in a fairly completed, yet concise manner, together with the necessary mathematical fundamentals and explanations to understand their application. Furthermore, all these methods have been embedded in the user-friendly open source software named SpiCoDyn, which is also introduced here. All in all, this book provides researchers and graduate students in bioengineering, neurophysiology and computer science, with a set of simplified and reduced models for studying functional connectivity in in silico biological neuronal networks, thus overcoming the complexity of brain circuits.
This is a book about graph homomorphisms. Graph theory is now an
established discipline but the study of graph homomorphisms has
only recently begun to gain wide acceptance and interest. The
subject gives a useful perspective in areas such as graph
reconstruction, products, fractional and circular colorings, and
has applications in complexity theory, artificial intelligence,
telecommunication, and, most recently, statistical physics.
This book describes active illumination techniques in computer vision. We can classify computer vision techniques into two classes: passive and active techniques. Passive techniques observe the scene statically and analyse it as is. Active techniques give the scene some actions and try to facilitate the analysis. In particular, active illumination techniques project specific light, for which the characteristics are known beforehand, to a target scene to enable stable and accurate analysis of the scene. Traditional passive techniques have a fundamental limitation. The external world surrounding us is three-dimensional; the image projected on a retina or an imaging device is two-dimensional. That is, reduction of one dimension has occurred. Active illumination techniques compensate for the dimensional reduction by actively controlling the illumination. The demand for reliable vision sensors is rapidly increasing in many application areas, such as robotics and medical image analysis. This book explains this new endeavour to explore the augmentation of reduced dimensions in computer vision. This book consists of three parts: basic concepts, techniques, and applications. The first part explains the basic concepts for understanding active illumination techniques. In particular, the basic concepts of optics are explained so that researchers and engineers outside the field can understand the later chapters. The second part explains currently available active illumination techniques, covering many techniques developed by the authors. The final part shows how such active illumination techniques can be applied to various domains, describing the issue to be overcome by active illumination techniques and the advantages of using these techniques. This book is primarily aimed at 4th year undergraduate and 1st year graduate students, and will also help engineers from fields beyond computer vision to use active illumination techniques. Additionally, the book is suitable as course material for technical seminars.
This book bridges the gaps between logic, mathematics and computer science by delving into the theory of well-quasi orders, also known as wqos. This highly active branch of combinatorics is deeply rooted in and between many fields of mathematics and logic, including proof theory, commutative algebra, braid groups, graph theory, analytic combinatorics, theory of relations, reverse mathematics and subrecursive hierarchies. As a unifying concept for slick finiteness or termination proofs, wqos have been rediscovered in diverse contexts, and proven to be extremely useful in computer science. The book introduces readers to the many facets of, and recent developments in, wqos through chapters contributed by scholars from various fields. As such, it offers a valuable asset for logicians, mathematicians and computer scientists, as well as scholars and students.
This book is the first general and extensive review on the algorithmics and mathematical results of beyond planar graphs. Most real-world data sets are relational and can be modelled as graphs consisting of vertices and edges. Planar graphs are fundamental for both graph theory and graph algorithms and are extensively studied. Structural properties and fundamental algorithms for planar graphs have been discovered. However, most real-world graphs, such as social networks and biological networks, are non-planar. To analyze and visualize such real-world networks, it is necessary to solve fundamental mathematical and algorithmic research questions on sparse non-planar graphs, called beyond planar graphs.This book is based on the National Institute of Informatics (NII) Shonan Meeting on algorithmics on beyond planar graphs held in Japan in November, 2016. The book consists of 13 chapters that represent recent advances in various areas of beyond planar graph research. The main aims and objectives of this book include 1) to timely provide a state-of-the-art survey and a bibliography on beyond planar graphs; 2) to set the research agenda on beyond planar graphs by identifying fundamental research questions and new research directions; and 3) to foster cross-disciplinary research collaboration between computer science (graph drawing and computational geometry) and mathematics (graph theory and combinatorics). New algorithms for beyond planar graphs will be in high demand by practitioners in various application domains to solve complex visualization problems. This book therefore will be a valuable resource for researchers in graph theory, algorithms, and theoretical computer science, and will stimulate further deep scientific investigations into many areas of beyond planar graphs. |
You may like...
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,261
Discovery Miles 22 610
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,264
Discovery Miles 42 640
Research Trends in Graph Theory and…
Daniela Ferrero, Leslie Hogben, …
Hardcover
R3,259
Discovery Miles 32 590
Algebraic Number Theory and Fermat's…
Ian Stewart, David Tall
Paperback
R1,230
Discovery Miles 12 300
|