Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This book on multimedia tools for communicating mathematics arose
from presentations at an international workshop organized by the
Centro de Matematica e Aplicacoes Fundamentais at the University of
Lisbon, in November 2000, with the collaboration of the
Sonderforschungsbereich 288 at the University of Technology in
Berlin, and of the Centre for Experimental and Constructive
Mathematics at Simon Fraser University in Burnaby, Canada. The
MTCM2000 meeting aimed at the scientific methods and algorithms at
work inside multimedia tools, and it provided an overview of the
range of present multimedia projects, of their limitations and the
underlying mathematical problems.
Topics in Matroid Theory provides a brief introduction to matroid theory with an emphasis on algorithmic consequences.Matroid theory is at the heart of combinatorial optimization and has attracted various pioneers such as Edmonds, Tutte, Cunningham and Lawler among others. Matroid theory encompasses matrices, graphs and other combinatorial entities under a common, solid algebraicframework, thereby providing the analytical tools to solve related difficult algorithmic problems. The monograph contains a rigorousaxiomatic definition of matroids along with other necessary concepts such as duality, minors, connectivity and representability asdemonstrated in matrices, graphs and transversals. The author also presents a deep decomposition result in matroid theory that providesa structural characterization of graphic matroids, and show how this can be extended to signed-graphic matroids, as well as the immediatealgorithmic consequences. "
I. The topics of this book The concept of a matroid has been known for more than five decades. Whitney (1935) introduced it as a common generalization of graphs and matrices. In the last two decades, it has become clear how important the concept is, for the following reasons: (1) Combinatorics (or discrete mathematics) was considered by many to be a collection of interesting, sometimes deep, but mostly unrelated ideas. However, like other branches of mathematics, combinatorics also encompasses some gen eral tools that can be learned and then applied, to various problems. Matroid theory is one of these tools. (2) Within combinatorics, the relative importance of algorithms has in creased with the spread of computers. Classical analysis did not even consider problems where "only" a finite number of cases were to be studied. Now such problems are not only considered, but their complexity is often analyzed in con siderable detail. Some questions of this type (for example, the determination of when the so called "greedy" algorithm is optimal) cannot even be answered without matroidal tools."
Mathematics and Computer Science III contains invited and contributed papers on combinatorics, random graphs and networks, algorithms analysis and trees, branching processes, constituting the Proceedings of the Third International Colloquium on Mathematics and Computer Science, held in Vienna in September 2004. It addresses a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers.
This book presents novel graph-theoretic methods for complex computer vision and pattern recognition tasks. It presents the application of graph theory to low-level processing of digital images, presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, and provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks.
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry," held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Soderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour. "
This book constitutes the refereed proceedings of the 9th International Conference on Combinatorics on Words, WORDS 2013, held in Turku, Finland, in September 2013 under the auspices of the EATCS. The 20 revised full papers presented were carefully reviewed and selected from 43 initial submissions. The central topic of the conference is combinatorics on words (i.e. the study of finite and infinite sequence of symbols) from varying points of view, including their combinatorial, algebraic and algorithmic aspects, as well as their applications.
The discrete Fourier transform (DFT) is an extremely useful tool that finds application in many different disciplines. However, its use requires caution. The aim of this book is to explain the DFT and its various artifacts and pitfalls and to show how to avoid these (whenever possible), or at least how to recognize them in order to avoid misinterpretations. This concentrated treatment of the DFT artifacts and pitfalls in a single volume is, indeed, new, and it makes this book a valuable source of information for the widest possible range of DFT users. Special attention is given to the one and two dimensional cases due to their particular importance, but the discussion covers the general multidimensional case, too. The book favours a pictorial, intuitive approach which is supported by mathematics, and the discussion is accompanied by a large number of figures and illustrative examples, some of which are visually attractive and even spectacular. Mastering the Discrete Fourier Transform in One, Two or Several Dimensions is intended for scientists, engineers, students and any readers who wish to widen their knowledge of the DFT and its practical use. This book will also be very useful for 'naive' users from various scientific or technical disciplines who have to use the DFT for their respective applications. The prerequisite mathematical background is limited to an elementary familiarity with calculus and with the continuous and discrete Fourier theory.
This book constitutes the refereed proceedings of the 19th International Conference on Computing and Combinatorics, COCOON 2013, held in Hangzhou, China, in June 2013. The 56 revised full papers presented were carefully reviewed and selected from 120 submissions. There was a co-organized workshop on discrete algorithms of which 8 short papers were accepted and a workshop on computational social networks where 12 papers out of 25 submissions were accepted.
Quantum field theory is one of most central constructions in 20th century th- retical physics, and it continues to develop rapidly in many different directions. The aim of the workshop "New Developments in Quantum Field Theory," which was held in Zakopane, Poland, June 14-20, 1997, was to capture a broad selection of the most recent advances in this field. The conference was sponsored by the Scientific and - vironmental Affairs Division of NATO, as part of the Advanced Research Workshop series. This book contains the proceedings of that meeting. Major topics covered at the workshop include quantized theories of gravity, string theory, conformal field theory, cosmology, field theory approaches to critical phenomena and the renormalization group, matrix models, and field theory techniques applied to the theory of turbulence. One common theme at the conference was the use of large-Nmatrix models to obtain exact results in a variety of different disciplines. For example, it has been known for several years that by taking a suitable double-scaling limit, certain string theories (or two-dimensional quantum gravity coupled to matter) can be re-obtained from the large-Nexpansion of matrix models. There continues to be a large activity in this area of research, which was well reflected by talks given at our workshop. Remarkably, large- Nmatrix models have very recently - just a few months before our meeting - been shown to have yet another deep relation to string theory.
These sequences exhibit some surprising properties that make them a fascinating subject for research in combinatorial analysis. This 1995 book on the subject by two of its leading researchers will be an important resource for students and professionals in combinatorics, computational geometry and related fields.
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
A powerful new image presentation technique has evolved over the last twenty years, and its value demonstrated through its support of many and varied common tasks. Conceptually, Rapid Serial Visual Presentation (RSVP) is basically simple, exemplified in the physical world by the rapid riffling of the pages of a book in order to locate a known image. Advances in computation and graphics processing allow RSVP to be applied flexibly and effectively to a huge variety of common tasks such as window shopping, video fast-forward and rewind, TV channel selection and product browsing. At its heart is a remarkable feature of the human visual processing system known as pre-attentive processing, one which supports the recognition of a known image within as little as one hundred milliseconds and without conscious cognitive effort. Knowledge of pre-attentive processing, together with extensive empirical evidence concerning RSVP, has allowed the authors to provide useful guidance to interaction designers wishing to explore the relevance of RSVP to an application, guidance which is supported by a variety of illustrative examples.
Sphere Packings is one of the most attractive and challenging subjects in mathematics. Almost 4 centuries ago, Kepler studied the densities of sphere packings and made his famous conjecture. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with othe subjects found. Thus, though some of its original problems are still open, sphere packings has been developed into an important discipline. This book tries to give a full account of this fascinating subject, especially its local aspects, discrete aspects and its proof methods.
A gentle introduction to the highly sophisticated world of discrete mathematics, Mathematical Problems and Proofs presents topics ranging from elementary definitions and theorems to advanced topics -- such as cardinal numbers, generating functions, properties of Fibonacci numbers, and Euclidean algorithm. This excellent primer illustrates more than 150 solutions and proofs, thoroughly explained in clear language. The generous historical references and anecdotes interspersed throughout the text create interesting intermissions that will fuel readers' eagerness to inquire further about the topics and some of our greatest mathematicians. The author guides readers through the process of solving enigmatic proofs and problems, and assists them in making the transition from problem solving to theorem proving. At once a requisite text and an enjoyable read, Mathematical Problems and Proofs is an excellent entree to discrete mathematics for advanced students interested in mathematics, engineering, and science.
A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader.
This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.
This book is a continuation of Theory of Matroids (also edited by Neil White), and again consists of a series of related surveys that have been contributed by authorities in the area. The volume begins with three chapters on coordinatisations, followed by one on matching theory. The next two deal with transversal and simplicial matroids. These are followed by studies of the important matroid invariants. The final chapter deals with matroids in combinatorial optimisation, a topic of much current interest. The whole volume has been carefully edited to ensure a uniform style and notation throughout, and to make a work that can be used as a reference or as an introductory textbook for graduate students or non-specialists.
This volume is dedicated to the memory of Rudolf Ahlswede, who passed away in December 2010. The Festschrift contains 36 thoroughly refereed research papers from a memorial symposium, which took place in July 2011. Thefour macro-topics of this workshop: theory of games and strategic planning; combinatorial group testing and database mining; computational biology and string matching; information coding and spreading and patrolling on networks; provide a comprehensive picture of the vision Rudolf Ahlswede put forward of a broad and systematic theory of search.
The analysis of orthogonal polynomials associated with general weights has been a major theme in classical analysis this century. In this monograph, the authors define and discuss their classes of weights, state several of their results on Christoffel functions, Bernstein inequalities, restricted range inequalities, and record their bounds on the orthogonal polynomials, as well as their asymptotic results. This book will be of interest to researchers in approximation theory, potential theory, as well as in some branches of engineering.
This book constitutes the refereed proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2013, held in Vienna, Austria, in April 2013, colocated with the Evo* 2013 events EuroGP, EvoBIO, EvoMUSART, and EvoApplications. The 23 revised full papers presented were carefully reviewed and selected from 50 submissions. The papers present the latest research and discuss current developments and applications in metaheuristics - a paradigm to effectively solve difficult combinatorial optimization problems appearing in various industrial, economic, and scientific domains. Prominent examples of metaheuristics are ant colony optimization, evolutionary algorithms, greedy randomized adaptive search procedures, iterated local search, simulated annealing, tabu search, and variable neighborhood search. Applications include scheduling, timetabling, network design, transportation and distribution, vehicle routing, the travelling salesman problem, packing and cutting, satisfiability, and general mixed integer programming.
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica (R), is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.
This is a collection of surveys and research papers on topics of interest in combinatorics, given at a conference in Matrahaza, Hungary. Originally published in journal form, it is here reissued as a book due to its special interest. It is dedicated to Paul Erdoes, who attended the conference and who is represented by two articles in the collection, including one, unfinished, which he was writing on the eve of his sudden death. Erdoes was one of the greatest mathematicians of his century and often the subject of anecdotes about his somewhat unusual lifestyle. A preface, written by friends and colleagues, gives a flavour of his life, including many such stories, and also describes the broad outline and importance of his work in combinatorics and other related fields. Here is a succinct introduction to important ideas in combinatorics for researchers and graduate students. |
You may like...
Active Lighting and Its Application for…
Katsushi Ikeuchi, Yasuyuki Matsushita, …
Hardcover
R4,592
Discovery Miles 45 920
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,264
Discovery Miles 42 640
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,261
Discovery Miles 22 610
Research Trends in Graph Theory and…
Daniela Ferrero, Leslie Hogben, …
Hardcover
R3,259
Discovery Miles 32 590
|