![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer hardware & operating systems
Provides insight into the skill set that requires leveraging strength to move further to act as a good data analyst Discusses how big data along with deep learning holds the potential to significantly increase data understanding and in turn, helps to make decisions Covers the numerous potential applications in healthcare, education, communications, media, and the entertainment industry Offers innovative platforms for integrating big data and deep learning Presents issues related to adequate data storage, sematic indexing, data tagging, and fast information retrieval from big data
This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
((keine o-Punkte, sondern 2 accents aigus auf dem o in Szokefalvi, s. auch Titel )) In August 1999, an international conference was held in Szeged, Hungary, in honor of Bela Szokefalvi-Nagy, one of the founders and main contributors of modern operator theory. This volume contains some of the papers presented at the meeting, complemented by several papers of experts who were unable to attend. These 35 refereed articles report on recent and original results in various areas of operator theory and connected fields, many of them strongly related to contributions of Sz.-Nagy. The scientific part of the book is preceeded by fifty pages of biographical material, including several photos."
This book provides a new perspective on modeling cyber-physical systems (CPS), using a data-driven approach. The authors cover the use of state-of-the-art machine learning and artificial intelligence algorithms for modeling various aspect of the CPS. This book provides insight on how a data-driven modeling approach can be utilized to take advantage of the relation between the cyber and the physical domain of the CPS to aid the first-principle approach in capturing the stochastic phenomena affecting the CPS. The authors provide practical use cases of the data-driven modeling approach for securing the CPS, presenting novel attack models, building and maintaining the digital twin of the physical system. The book also presents novel, data-driven algorithms to handle non- Euclidean data. In summary, this book presents a novel perspective for modeling the CPS.
This book is based on the 18 tutorials presented during the 26th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on hybrid ADCs, smart sensors for the IoT, sub-1V and advanced-node analog circuit design. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.
The book Security of Internet of Things Nodes: Challenges, Attacks, and Countermeasures (R) covers a wide range of research topics on the security of the Internet of Things nodes along with the latest research development in the domain of Internet of Things. It also covers various algorithms, techniques, and schemes in the field of computer science with state-of-the-art tools and technologies. This book mainly focuses on the security challenges of the Internet of Things devices and the countermeasures to overcome security vulnerabilities. Also, it highlights trust management issues on the Internet of Things nodes to build secured Internet of Things systems. The book also covers the necessity of a system model for the Internet of Things devices to ensure security at the hardware level.
Fueled by ubiquitous computing ambitions, the edge is at the center of confluence of many emergent technological trends such as hardware-rooted trust and code integrity, 5G, data privacy and sovereignty, blockchains and distributed ledgers, ubiquitous sensors and drones, autonomous systems and real-time stream processing. Hardware and software pattern maturity have reached a tipping point so that scenarios like smart homes, smart factories, smart buildings, smart cities, smart grids, smart cars, smart highways are in reach of becoming a reality. While there is a great desire to bring born-in-the-cloud patterns and technologies such as zero-downtime software and hardware updates/upgrades to the edge, developers and operators alike face a unique set of challenges due to environmental differences such as resource constraints, network availability and heterogeneity of the environment. The first part of the book discusses various edge computing patterns which the authors have observed, and the reasons why these observations have led them to believe that there is a need for a new architectural paradigm for the new problem domain. Edge computing is examined from the app designer and architect's perspectives. When they design for edge computing, they need a new design language that can help them to express how capabilities are discovered, delivered and consumed, and how to leverage these capabilities regardless of location and network connectivity. Capability-Oriented Architecture is designed to provide a framework for all of these. This book is for everyone who is interested in understanding what ubiquitous and edge computing means, why it is growing in importance and its opportunities to you as a technologist or decision maker. The book covers the broad spectrum of edge environments, their challenges and how you can address them as a developer or an operator. The book concludes with an introduction to a new architectural paradigm called capability-based architecture, which takes into consideration the capabilities provided by an edge environment. .
Dependence Analysis may be considered to be the second edition of the author's 1988 book, Dependence Analysis for Supercomputing. It is, however, a completely new work that subsumes the material of the 1988 publication. This book is the third volume in the series Loop Transformations for Restructuring Compilers. This series has been designed to provide a complete mathematical theory of transformations that can be used to automatically change a sequential program containing FORTRAN-like do loops into an equivalent parallel form. In Dependence Analysis, the author extends the model to a program consisting of do loops and assignment statements, where the loops need not be sequentially nested and are allowed to have arbitrary strides. In the context of such a program, the author studies, in detail, dependence between statements of the program caused by program variables that are elements of arrays. Dependence Analysis is directed toward graduate and undergraduate students, and professional writers of restructuring compilers. The prerequisite for the book consists of some knowledge of programming languages, and familiarity with calculus and graph theory. No knowledge of linear programming is required.
This book provides an overview of emerging topics in the field of hardware security, such as artificial intelligence and quantum computing, and highlights how these technologies can be leveraged to secure hardware and assure electronics supply chains. The authors are experts in emerging technologies, traditional hardware design, and hardware security and trust. Readers will gain a comprehensive understanding of hardware security problems and how to overcome them through an efficient combination of conventional approaches and emerging technologies, enabling them to design secure, reliable, and trustworthy hardware.
This book provides an insightful guide to the design, testing and optimization of micro-electrode-dot-array (MEDA) digital microfluidic biochips. The authors focus on the characteristics specific for MEDA biochips, e.g., real-time sensing and advanced microfluidic operations like lamination mixing and droplet shape morphing. Readers will be enabled to enhance the automated design and use of MEDA and to develop a set of solutions to facilitate the full exploitation of design complexities that are possible with standard CMOS fabrication techniques. The book provides the first set of design automation and test techniques for MEDA biochips. The methods described in this book have been validated using fabricated MEDA biochips in the laboratory. Readers will benefit from an in-depth look at the MEDA platform and how to combine microfluidics with software, e.g., applying biomolecular protocols to software-controlled and cyberphysical microfluidic biochips.
Artificial Intelligence in Mechanical and Industrial Engineering offers a unified platform for the dissemination of basic and applied knowledge on the integration of artificial intelligence within the realm of mechanical and industrial engineering. The book covers the tools and information needed to build successful careers and a source of knowledge for those working with AI within these domains. The book offers a systematic approach to explicate fundamentals as well as recent advances. It incorporates various case studies for major topics as well as numerous examples. It will also include real-time intelligent automation and associated supporting methodologies and techniques, and cover decision-support systems, as well as applications of Chaos Theory and Fractals. The book will give scientists, researchers, instructors, students, and practitioners the tools and information needed to build successful careers and to be an impetus to advancements in next-generation mechanical and industrial engineering domains.
This reference text presents the usage of artificial intelligence in healthcare and discusses the challenges and solutions of using advanced techniques like wearable technologies and image processing in the sector. Features: Focuses on the use of artificial intelligence (AI) in healthcare with issues, applications, and prospects Presents the application of artificial intelligence in medical imaging, fractionalization of early lung tumour detection using a low intricacy approach, etc Discusses an artificial intelligence perspective on wearable technology Analyses cardiac dynamics and assessment of arrhythmia by classifying heartbeat using electrocardiogram (ECG) Elaborates machine learning models for early diagnosis of depressive mental affliction This book serves as a reference for students and researchers analyzing healthcare data. It can also be used by graduate and post graduate students as an elective course.
Provides comprehensive research ideas about Edge-AI technology that can assist doctors in making better data-driven decisions and will provide insights to researchers about healthcare industry, trends and future perspective. Examines how healthcare systems of the future will operate, by augmenting clinical resources and ensuring optimal patient outcomes. Provides insight about how Edge-AI is revolutionizing decision making, early warnings for conditions, and visual inspection in healthcare. Highlight trends, challenges, opportunities and future areas where Healthcare informatics deal with accessing vast data sets of potentially life-saving information.
This book is the fifth volume in the successful book series Robot Operating System: The Complete Reference. The objective of the book is to provide the reader with comprehensive coverage on the Robot Operating System (ROS), which is currently considered to be the primary development framework for robotics applications, and the latest trends and contributing systems. The content is divided into six parts. Pat I presents for the first time the emerging ROS 2.0 framework, while Part II focuses on multi-robot systems, namely on SLAM and Swarm coordination. Part III provides two chapters on autonomous systems, namely self-driving cars and unmanned aerial systems. In turn, Part IV addresses the contributions of simulation frameworks for ROS. In Part V, two chapters explore robotic manipulators and legged robots. Finally, Part VI presents emerging topics in monocular SLAM and a chapter on fault tolerance systems for ROS. Given its scope, the book will offer a valuable companion for ROS users and developers, helping them deepen their knowledge of ROS capabilities and features.
Hardware Security: A Hands-On Learning Approach provides a broad, comprehensive and practical overview of hardware security that encompasses all levels of the electronic hardware infrastructure. It covers basic concepts like advanced attack techniques and countermeasures that are illustrated through theory, case studies and well-designed, hands-on laboratory exercises for each key concept. The book is ideal as a textbook for upper-level undergraduate students studying computer engineering, computer science, electrical engineering, and biomedical engineering, but is also a handy reference for graduate students, researchers and industry professionals. For academic courses, the book contains a robust suite of teaching ancillaries. Users will be able to access schematic, layout and design files for a printed circuit board for hardware hacking (i.e. the HaHa board) that can be used by instructors to fabricate boards, a suite of videos that demonstrate different hardware vulnerabilities, hardware attacks and countermeasures, and a detailed description and user manual for companion materials.
This book introduces a new scheduler to fairly and efficiently distribute system resources to many users of varying usage patterns compete for them in large shared computing environments. The Rawlsian Fair scheduler developed for this effort is shown to boost performance while reducing delay in high performance computing workloads of certain types including the following four types examined in this book: i. Class A - similar but complementary workloads ii. Class B - similar but steady vs intermittent workloads iii. Class C - Large vs small workloads iv. Class D - Large vs noise-like workloads This new scheduler achieves short-term fairness for small timescale demanding rapid response to varying workloads and usage profiles. Rawlsian Fair scheduler is shown to consistently benefit workload Classes C and D while it only benefits Classes A and B workloads where they become disproportionate as the number of users increases. A simulation framework, dSim, simulates the new Rawlsian Fair scheduling mechanism. The dSim helps achieve instantaneous fairness in High Performance Computing environments, effective utilization of computing resources, and user satisfaction through the Rawlsian Fair scheduler.
State-of-the-art methods and current perspectives on interconnect The irrepressible march toward smaller and faster integrated circuits has made interconnect a hot topic for semiconductor research. The effects of wire size, topology construction, and network design on system performance and reliability have all been thoroughly investigated in recent years. Interconnect Analysis and Synthesis provides CAD researchers and engineers with powerful, state-of-the-art tools for the analysis, design, and optimization of interconnect. It brings together a wealth of information previously scattered throughout the literature, explaining in depth available analysis techniques and presenting a range of CAD algorithms for synthesizing and optimizing interconnect. Along with examples and results from the semiconductor industry and 150 illustrations, this practical work features:
This book is timely and discusses the effects from the pandemic. Written for longevity, and may be useful to compare this pandemic and the response to future events. The book is written for academia: social sciences, public health, information science, emergency management, and policy fields, and is easier informational reading for the layperson.
This book cover wireless communication, security issues, advanced wireless sensor networks, routing protocols of WSNs with cross-layer solutions, emerging trends in the advanced WSNs, power management, distributed sensing and data gathering techniques for WSNs, WSNs Security, applications, research of advanced WSNs with simulation results, and simulation tools for WSNs. Features: Covers technologies supporting advanced wireless communication system, sensor networks and the conceptual development of the subject. Discusses advanced data gathering and sharing/ distributed sensing techniques with its business applicability. Includes numerous worked-out mathematical equations/formulas, and essential principles including figures, illustrations, algorithms, and flow charts are included in the book. Provides pervasive background knowledge including both wireless communications and wireless sensor networks Covers wireless networks as well as sensor network models in detailed. This is aimed at graduate students, researchers and academicians working in the field of computer science, wireless communication technology, and advanced wireless sensor networks.
How can we recruit out of your program? We have a project - how do we reach out to your students? If we do research together who owns it? We have employees who need to "upskill" in analytics - can you help me with that? How much does all of this cost? Managers and executives are increasingly asking university professors such questions as they deal with a critical shortage of skilled data analysts. At the same time, academics are asking such questions as: How can I bring a "real" analytical project in the classroom? How can I get "real" data to help my students develop the skills necessary to be a "data scientist? Is what I am teaching in the classroom aligned with the demands of the market for analytical talent? After spending several years answering almost daily e-mails and telephone calls from business managers asking for staffing help and aiding fellow academics with their analytics teaching needs, Dr. Jennifer Priestley of Kennesaw State University and Dr. Robert McGrath of the University of New Hampshire wrote Closing the Analytics Talent Gap: An Executive's Guide to Working with Universities. The book builds a bridge between university analytics programs and business organizations. It promotes a dialog that enables executives to learn how universities can help them find strategically important personnel and universities to learn how they can develop and educate this personnel. Organizations are facing previously unforeseen challenges related to the translation of massive amounts of data - structured and unstructured, static and in-motion, voice, text, and image - into information to solve current challenges and anticipate new ones. The advent of analytics and data science also presents universities with unforeseen challenges of providing learning through application. This book helps both organizations with finding "data natives" and universities with educating students to develop the facility to work in a multi-faceted and complex data environment. .
Automatic Performance Prediction of Parallel Programs presents a unified approach to the problem of automatically estimating the performance of parallel computer programs. The author focuses primarily on distributed memory multiprocessor systems, although large portions of the analysis can be applied to shared memory architectures as well. The author introduces a novel and very practical approach for predicting some of the most important performance parameters of parallel programs, including work distribution, number of transfers, amount of data transferred, network contention, transfer time, computation time and number of cache misses. This approach is based on advanced compiler analysis that carefully examines loop iteration spaces, procedure calls, array subscript expressions, communication patterns, data distributions and optimizing code transformations at the program level; and the most important machine specific parameters including cache characteristics, communication network indices, and benchmark data for computational operations at the machine level. The material has been fully implemented as part of P3T, which is an integrated automatic performance estimator of the Vienna Fortran Compilation System (VFCS), a state-of-the-art parallelizing compiler for Fortran77, Vienna Fortran and a subset of High Performance Fortran (HPF) programs. A large number of experiments using realistic HPF and Vienna Fortran code examples demonstrate highly accurate performance estimates, and the ability of the described performance prediction approach to successfully guide both programmer and compiler in parallelizing and optimizing parallel programs. A graphical user interface is described and displayed that visualizes each program source line together with the corresponding parameter values. P3T uses color-coded performance visualization to immediately identify hot spots in the parallel program. Performance data can be filtered and displayed at various levels of detail. Colors displayed by the graphical user interface are visualized in greyscale. Automatic Performance Prediction of Parallel Programs also includes coverage of fundamental problems of automatic parallelization for distributed memory multicomputers, a description of the basic parallelization strategy and a large variety of optimizing code transformations as included under VFCS. |
You may like...
Practical TCP/IP and Ethernet Networking…
Deon Reynders, Edwin Wright
Paperback
R1,491
Discovery Miles 14 910
Algorithms, Methods, and Applications in…
Agustinus Borgy Waluyo
Hardcover
R5,123
Discovery Miles 51 230
Intelligent Image and Video Compression…
David R. Bull, Fan Zhang
Paperback
R2,606
Discovery Miles 26 060
Wireless Communication Networks…
Hailong Huang, Andrey V. Savkin, …
Paperback
R2,763
Discovery Miles 27 630
|