Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
Effective use of driving simulators requires considerable technical and methodological skill along with considerable background knowledge. Acquiring the requisite knowledge and skills can be extraordinarily time consuming, yet there has been no single convenient and comprehensive source of information on the driving simulation research being conducted around the world. A how-to-do-it resource for researchers and professionals, Handbook of Driving Simulation for Engineering, Medicine, and Psychology brings together discussions of technical issues in driving simulation with broad areas in which driving simulation is now playing a role. The chapters explore technical considerations, methodological issues, special and impaired populations, evaluation of in-vehicle and nomadic devices, and infrastructure evaluations. It examines hardware and software selection, visual database and scenario development, independent subject variables and dependent vehicle, environmental, and psychological variables, statistical and biostatistical analysis, different types of drivers, existing and future key-in vehicle devises, and validation of research. A compilation of the research from more than 100 of the world's top thinkers and practitioners, the book covers basic and advanced technical topics and provides a comprehensive review of the issues related to driving simulation. It describes literally hundreds of different simulation scenarios, provides color photographs of those scenarios, and makes available select videos of the scenarios on an accompanying web site, all of which should prove essential for seasoned researchers and for individuals new to driving simulation.
This book follows the methodologies of complex adaptive systems research in their application to addressing the problems of terrorism, specifically terrorist networks, their structure and various methods of mapping and interdicting them as well as exploring the complex landscape of network-centric and irregular warfare. A variety of new models and approaches are presented here, including Dynamic Network Analysis, DIME/PMESII models, percolation models and emergent models of insurgency. In addition, the analysis is informed by practical experience, with analytical and policy guidance from authors who have served within the U.S. Department of Defense, the British Ministry of Defence as well as those who have served in a civilian capacity as advisors on terrorism and counter-terrorism.
This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a "backstepping" method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.
Written in Alwyn Scott 's inimitable style, one that readers will find both lucid and accessible, this masterwork elucidates the explosion of activity in nonlinear science in recent decades. The book explains the wide-ranging implications of nonlinear phenomena for future developments in many areas of modern science, including mathematics, physics, engineering, chemistry, biology, and neuroscience. Arguably as important as quantum theory, modern nonlinear science is essential for understanding the scientific developments of the twenty-first century.
The asymptotic behaviour, in particular "stability" in some sense, is studied systematically for discrete and for continuous linear dynamical systems on Banach spaces. Of particular concern is convergence to an equilibrium with respect to various topologies. Parallels and differences between the discrete and the continuous situation are emphasised.
Society heavily depends on infrastructure systems, such as road-traffic networks, water networks, electricity networks, etc. Infrastructure systems are hereby considered to be large-scale, networked systems, that almost everybody uses on a daily basis, and that are so vital that their incapacity or destruction would have a debilitating impact on the defense or economic security and functioning of society. The operation and control of existing infrastructures such as road-traffic networks, water networks, electricity networks, etc. are failing: too often we are confronted with capacity problems, unsafety, unreliability and inefficiency. This book concentrates on a wide range of problems concerning the way infrastructures are functioning today and discuss novel advanced, intelligent, methods and tools for the operation and control of existing and future infrastructures.
This book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of control, filtering, and realization problems for such systems. Applications of the theory in the book include the control of ships, shock absorbers, traffic and communications networks, and power systems with fluctuating power flows. The focus of the book is a stochastic control system defined for a spectrum of probability distributions including Bernoulli, finite, Poisson, beta, gamma, and Gaussian distributions. The concepts of observability and controllability of a stochastic control system are defined and characterized. Each output process considered is, with respect to conditions, represented by a stochastic system called a stochastic realization. The existence of a control law is related to stochastic controllability while the existence of a filter system is related to stochastic observability. Stochastic control with partial observations is based on the existence of a stochastic realization of the filtration of the observed process.
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.
This monograph is a comprehensive and cohesive exposition of power-law statistics. Following a bottom-up construction from a foundational bedrock - the power Poisson process - this monograph presents a unified study of an assortment of power-law statistics including: Pareto laws, Zipf laws, Weibull and Frechet laws, power Lorenz curves, Levy laws, power Newcomb-Benford laws, sub-diffusion and super-diffusion, and 1/f and flicker noises. The bedrock power Poisson process, as well as the assortment of power-law statistics, are investigated via diverse perspectives: structural, stochastic, fractal, dynamical, and socioeconomic. This monograph is poised to serve researchers and practitioners - from various fields of science and engineering - that are engaged in analyses of power-law statistics.
Complex artificial dynamic systems require advanced modeling techniques that can accommodate their asynchronous, concurrent, and highly non-linear nature. Discrete Event systems Specification (DEVS) provides a formal framework for hierarchical construction of discrete-event models in a modular manner, allowing for model reuse and reduced development time. Discrete Event Modeling and Simulation presents a practical approach focused on the creation of discrete-event applications. The book introduces the CD++ tool, an open-source framework that enables the simulation of discrete-event models. After setting up the basic theory of DEVS and Cell-DEVS, the authors focus on how to use the CD++ tool to define a variety of models in biology, physics, chemistry, and artificial systems. They also demonstrate how to map different modeling techniques, such as Finite State Machines and VHDL, to DEVS. The in-depth coverage elaborates on the creation of simulation software for DEVS models and the 3D visualization environments associated with these tools. A much-need practical approach to creating discrete-event applications, this book offers world-class instruction on the field's most useful modeling making tools.
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
This book presents best selected research papers presented at the International Conference on Computer Networks, Big Data and IoT (ICCBI 2020), organized by Vaigai College Engineering, Madurai, Tamil Nadu, India, during 15-16 December 2020. The book covers original papers on computer networks, network protocols and wireless networks, data communication technologies and network security. The book is a valuable resource and reference for researchers, instructors, students, scientists, engineers, managers and industry practitioners in those important areas.
This book aims to present a survey of a large class of nonlinear dynamical systems exhibiting mixed-mode oscillations (MMOs). It is a sort of a guide to systems related to MMOs that features material from original research papers, including the author's own studies. The material is presented in seven chapters divided into sections. Usually, the first sections are of an introductory nature, explain phenomena, and exhibit numerical results. More advanced investigations are presented in the subsequent sections. Coverage includes * Dynamic behavior of nonlinear systems, * Fundamentals of processes exhibiting MMOs,* Mechanism and function of an structure of MMOs patterns, * Analysis of MMOs in electric circuits and systems, * MMOs in chemistry, biology, and medicine, * MMOs in mechanics and transport vehicles, * MMOs in fractional order systems. This is the first extensive description of these topics and the interpretation of analytical results and those obtained from computer simulations with the MATLAB environment. The book provides the readers with better understanding of the nature of MMOs, richness of their behaviors, and interesting applications.
recently discovered advantages of amorphous forms of medicines/pharmaceutical products which focused a significant part of industry-related efforts on the GFA (Glass Forming Ability) and the glass temperature (T) versus pressure g dependences. 1 b ? 0 ? ? o ? P ? Pg P ? Pg 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g ? 0 ? ? ? ? c + Pg ? ? ? ? 400 1 b 0 o ? ? ? ? P ? P P ? P g g 0 ? ? ? ? T (P ) = F (P )D (P ) =T 1 + exp ? g g 0 ? ? ? ? c ? + P max g ? ? ? ? T ~7 GPa g max P ~ 304 K Liquid g 300 1 HS glass 0 200 -1 mSG ?=0. 044 Liquid -2 100 -3 glass ?=0. 12 -1. 2 -0. 9 -0. 6 -0. 3 0. 0 log T 10 scaled -1 0 1 2 3 4 5 6 7 8 9 10 11 12 P (GPa) g 19 Figure 1. T he pressure evolution of the glass temperature in gl Th ye s cerol ol . id curve shows the parameterization of experimental data via the novel, modifie d Glat Sizm elon type equation, given in the Figure.
This book presents state-of-the-art solution methods and applications of stochastic optimal control. It is a collection of extended papers discussed at the traditional Liverpool workshop on controlled stochastic processes with participants from both the east and the west. New problems are formulated, and progresses of ongoing research are reported. Topics covered in this book include theoretical results and numerical methods for Markov and semi-Markov decision processes, optimal stopping of Markov processes, stochastic games, problems with partial information, optimal filtering, robust control, Q-learning, and self-organizing algorithms. Real-life case studies and applications, e.g., queueing systems, forest management, control of water resources, marketing science, and healthcare, are presented. Scientific researchers and postgraduate students interested in stochastic optimal control,- as well as practitioners will find this book appealing and a valuable reference.
This book provides a coherent framework for understanding the essence of complex systems and the nature of digital transformations, analyzes challenges of and patterns in innovative development, and shares a wealth of insights and best practices, resulting in the most extensive coverage of the topic available. In particular, the book's cutting-edge contributions, prepared by scientists, engineers, and field experts,focus on the design, implementation, and evaluation of practical interventions that promote the innovative and sustainable development of complex systems. In addition to sharing a rich collection of cases from around the world, they provide a broad interdisciplinary analysis of collaboration mechanisms, theories and approaches to support and accelerate the development of complex systems.
This book on complexity science comprises a collection of chapters on methods and principles from a wide variety of disciplinary fields - from physics and chemistry to biology and the social sciences.In this two-part volume, the first part is a collection of chapters introducing different aspects in a coherent fashion, and providing a common basis and the founding principles of the different complexity science approaches; the next provides deeper discussions of the different methods of use in complexity science, with interesting illustrative applications.The fundamental topics deal with self-organization, pattern formation, forecasting uncertainties, synchronization and revolutionary change, self-adapting and self-correcting systems, and complex networks. Examples are taken from biology, chemistry, engineering, epidemiology, robotics, economics, sociology, and neurology.
Examines current and prospective challenges surrounding global challenges of education, energy, healthcare, security, and resilience This book discusses issues in large-scale systems in the United States and around the world. The authors examine the challenges of education, energy, healthcare, national security, and urban resilience. The book covers challenges in education including America's use of educational funds, standardized testing, and the use of classroom technology. On the topic of energy, this book examines debates on climate, the current and future developments of the nuclear power industry, the benefits and cost decline of natural gases, and the promise of renewable energy. The authors also discuss national security, focusing on the issues of nuclear weapons, terrorism and cyber security. Urban resilience is addressed in the context of natural threats such as hurricanes and floods. * Studies the usage of a globalized benchmark for both student and pedagogical performance * Covers topics such as surveillance, operational capabilities, movement of resources, and the pros and cons of globalization * Examines big data, evolving medical methodologies and effects on the medical educational curriculum, and the positive effects of electronic records in healthcare data Perspectives on Complex Global Challenges: Education, Energy Healthcare, Security, and Resilience serves as a reference for government officials, personnel in security, business executives and system engineers.
This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.
This book presents the latest research on applications of artificial intelligence and the Internet of Things in renewable energy systems. Advanced renewable energy systems must necessarily involve the latest technology like artificial intelligence and Internet of Things to develop low cost, smart and efficient solutions. Intelligence allows the system to optimize the power, thereby making it a power efficient system; whereas, Internet of Things makes the system independent of wire and flexibility in operation. As a result, intelligent and IOT paradigms are finding increasing applications in the study of renewable energy systems. This book presents advanced applications of artificial intelligence and the internet of things in renewable energy systems development. It covers such topics as solar energy systems, electric vehicles etc. In all these areas applications of artificial intelligence methods such as artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above, called hybrid systems, are included. The book is intended for a wide audience ranging from the undergraduate level up to the research academic and industrial communities engaged in the study and performance prediction of renewable energy systems.
This book discusses the latest progresses and developments on complex systems research and intends to give an exposure to prospective readers about the theoretical and practical aspects of mathematical modelling, numerical simulation and agent-based modelling frameworks. The main purpose of this book is to emphasize a unified approach to complex systems analysis, which goes beyond to examine complicated phenomena of numerous real-life systems; this is done by investigating a huge number of components that interact with each other at different (microscopic and macroscopic) scales; new insights and emergent collective behaviours can evolve from the interactions between individual components and also with their environments. These tools and concepts permit us to better understand the patterns of various real-life systems and help us to comprehend the mechanisms behind which distinct factors shaping some complex systems phenomena being influenced. This book is published in conjunction with the International Workshop on Complex Systems Modelling & Simulation 2019 (CoSMoS 2019): IoT & Big Data Integration. This international event was held at the Universiti Sains Malaysia Main Campus, Penang, Malaysia, from 8 to 11 April 2019. This book appeals to readers interested in complex systems research and other related areas such as mathematical modelling, numerical simulation and agent-based modelling frameworks.
This multidisciplinary volume is the second in the STEAM-H series to feature invited contributions on mathematical applications in naval engineering. Seeking a more holistic approach that transcends current scientific boundaries, leading experts present interdisciplinary instruments and models on a broad range of topics. Each chapter places special emphasis on important methods, research directions, and applications of analysis within the field. Fundamental scientific and mathematical concepts are applied to topics such as microlattice materials in structural dynamics, acoustic transmission in low Mach number liquid flow, differential cavity ventilation on a symmetric airfoil, Kalman smoother, metallic foam metamaterials for vibration damping and isolation, seal whiskers as a bio-inspired model for the reduction of vortex-induced vibrations, multidimensional integral for multivariate weighted generalized Gaussian distributions, minimum uniform search track placement for rectangular regions, antennas in the maritime environment, the destabilizing impact of non-performers in multi-agent groups, inertial navigation accuracy with bias modeling. Carefully peer-reviewed and pedagogically presented for a broad readership, this volume is perfect to graduate and postdoctoral students interested in interdisciplinary research. Researchers in applied mathematics and sciences will find this book an important resource on the latest developments in naval engineering. In keeping with the ideals of the STEAM-H series, this volume will certainly inspire interdisciplinary understanding and collaboration.
This book illustrates how modern mathematical wavelet transform techniques offer fresh insights into the complex behavior of neural systems at different levels: from the microscopic dynamics of individual cells to the macroscopic behavior of large neural networks. It also demonstrates how and where wavelet-based mathematical tools can provide an advantage over classical approaches used in neuroscience. The authors well describe single neuron and populational neural recordings. This 2nd edition discusses novel areas and significant advances resulting from experimental techniques and computational approaches developed since 2015, and includes three new topics: * Detection of fEPSPs in multielectrode LFPs recordings. * Analysis of Visual Sensory Processing in the Brain and BCI for Human Attention Control; * Analysis and Real-time Classification of Motor-related EEG Patterns; The book is a valuable resource for neurophysiologists and physicists familiar with nonlinear dynamical systems and data processing, as well as for graduate students specializing in these and related areas.
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community. |
You may like...
Automated Machine Learning
Joaquin Vanschoren, Lars Kotthoff, …
Hardcover
R1,413
Discovery Miles 14 130
Computer Aided Verification
Hana Chockler, Georg Weissenbacher
Hardcover
R2,110
Discovery Miles 21 100
|