![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
Provides a comprehensive introduction to multi-robot systems planning and task allocation; Explores multi robot aerial planning, flight planning, orienteering and coverage, and deployment, patrolling, and foraging; Includes real-world case studies; Treats different aspects of cooperation in multi-agent systems.
This book, published in honor of Professor Laurent Praly on the occasion of his 65th birthday, explores the responses of some leading international authorities to new challenges in nonlinear and adaptive control. The mitigation of the effects of uncertainty and nonlinearity - ubiquitous features of real-world engineering and natural systems - on closed-loop stability and robustness being of crucial importance, the contributions report the latest research into overcoming these difficulties in: autonomous systems; reset control systems; multiple-input-multiple-output nonlinear systems; input delays; partial differential equations; population games; and data-driven control. Trends in Nonlinear and Adaptive Control presents research inspired by and related to Professor Praly's lifetime of contributions to control theory and is a valuable addition to the literature of advanced control.
This book contains all refereed papers accepted during the tenth edition of the conference that took place at the Cite Internationale Universitaire de Paris on December 12-13, 2019. Mastering complex systems requires an integrated understanding of industrial practices as well as sophisticated theoretical techniques and tools. This explains the creation of an annual go-between forum in Paris dedicated to academic researchers & industrial actors working on complex industrial systems architecture, modeling & engineering. These proceedings cover the most recent trends in the emerging field of Complex Systems, both from an academic and a professional perspective. A special focus is put on "Systems Engineering through the ages". The CSD&M Paris 2019 conference is organized under the guidance of CESAM Community. It has been developed since 2010 by the non-profit organization CESAMES Association to organize the sharing of good practices in Enterprise and Systems Architecture and to certify the level of knowledge and proficiency in this field through CESAM certification.
This monograph examines the stability of various coupled systems with local Kelvin-Voigt damping. The development of this area is thoroughly reviewed along with the authors' contributions. New results are featured on the fundamental properties of solutions of linear transmission evolution PDEs involving Kelvin-Voigt damping, with special emphasis on the asymptotic behavior of these solutions. The vibrations of transmission problems are highlighted as well, making this a valuable resource for those studying this active area of research. The book begins with a brief description of the abstract theory of linear evolution equations with a particular focus on semigroup theory. Different types of stability are also introduced along with their connection to resolvent estimates. After this foundation is established, different models are presented for uni-dimensional and multi-dimensional linear transmission evolution partial differential equations with Kelvin-Voigt damping. Stabilization of Kelvin-Voigt Damped Systems will be a useful reference for researchers in mechanics, particularly those interested in the study of control theory of PDEs.
This textbook teaches students techniques for the design of advanced digital systems using System-on-Chip (SoC) Field Programmable Gate Arrays (FPGAs). The author demonstrates design of custom hardware components for the FPGA fabric using VHDL, with implementation of custom hardware-software interfaces. Readers gain hands-on experience by writing programs and Linux device drivers in C to interact with custom hardware. This textbook enables laboratory experience in the design of custom digital systems using SoC FPGAs, emphasizing computational tasks such as digital signal processing, audio, or video processing.
By incorporating biologically-inspired functions into ICT, various types of new-generation information and communication systems can be created. Just some example of areas already benefiting from such design inspiration are network architectures, information processing, molecular communication, and complex network modeling for solving real world-problems. This book provides the theoretical basis for understanding these developments and explains their practical applications. Highlighted inserts appears throughout to help readers to understand the very latest topics in these emerging research fields. The book ends with a more philosophical discussion on how new ICT solutions can be found by looking at analogous systems in biology. This new way of thinking may help researchers and practitioners to apply innovative ideas in developing next-generation technologies.
This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.
The aim of the School on Rheology of Complex fluids is to bring together young researchers and teachers from educational and R&D institutions, and expose them to the basic concepts and research techniques used in the study of rheological behavior of complex fluids. The lectures will be delivered by well-recognized experts. The book contents will be based on the lecture notes of the school.
Simulation and molding are efficient techniques that can aid the city and regional planners and engineers in optimizing the operation of urban systems such as traffic light control, highway toll automation, consensus building, public safety, and environmental protection. When modeling transportation systems such as freeway systems, arterial or downtown grid systems, the city planner and engineer is concerned with capturing the varied interactions between drivers, automobiles, and the infrastructure. Modeling and simulation are used to effectively optimize the design and operation of all of these urban systems. It is possible that in an urban simulation community workshop, citizens can work interactively in front of computers and be able using the click of the mouse to walk up to their own front porch, looking at the proposed shopping mall alternatives across the street from virtually any angle and proposed bridge or tunnel and see how it can reduce traffic congestion. Buildings can be scaled down or taken out, their orientation can be changed in order to check the view and orientation in order to have better site with efficient energy-conservation. The stone or brick material on a building can be replaced by colored concrete, or more trees and lampposts can be placed on the site. Such flexibility in simulation and animation allows creative ideas in the design and orientation of urban sites to be demonstrated to citizens and decision makers before final realization.
Computer-Controlled Systems with Delay is a systematic study of the problems of analysis and synthesis for multidimensional sampled-data (SD) systems with delay. It is based on the frequency polynomial method, in which the concept of a parametric transfer matrix (PTM) plays a key role. Until now, no alternative general methods have been available to solve the above problems. The text is divided into three parts: background information from the theory of polynomial and rational matrices, helps the reader to acquire the basic understanding necessary to use the main content of the book without addressing additional sources; methods for the mathematical description of multidimensional SD systems with delay, based on the concept of the PTM; and optimization methods for multidimensional SD systems with delay, including H2 and L2 optimization as well as H2 optimization for colored input signals. The monograph is completed by three appendices. An algorithm for constructing the set of pathological sampling periods for a continuous SISO object with delay is provided first. MATLAB (R)-toolbox algorithms representing methods described in the book and application examples for selected optimization problems are given in the second. A solution to the problem of guaranteeing the required performance in a class of stochastic disturbances for SD systems with delay is considered in the third. Computer-Controlled Systems with Delay is intended for engineers, scientists and teachers working in modern control theory. It will also benefit post-graduate students taking courses in related disciplines. The book continues the description of the authors' research results on developing methods for SD systems theory which are based on the PTM concept and published in the monographs Computer Controlled Systems and Multivariable Computer-controlled Systems.
After a short introduction to the fundamentals, this book provides a detailed account of major advances in applying fractional calculus to dynamical systems. Fractional order dynamical systems currently continue to gain further importance in many areas of science and engineering. As with many other approaches to mathematical modeling, the first issue to be addressed is the need to couple a definition of the fractional differentiation or integration operator with the types of dynamical systems that are analyzed. As such, for the fundamentals the focus is on basic aspects of fractional calculus, in particular stability analysis, which is required to tackle synchronization in coupled fractional order systems, to understand the essence of estimators for related integer order systems, and to keep track of the interplay between synchronization and parameter observation. This serves as the common basis for the more advanced topics and applications presented in the subsequent chapters, which include an introduction to the 'Immersion and Invariance' (I&I) methodology, the masterslave synchronization scheme for partially known nonlinear fractional order systems, Fractional Algebraic Observability (FAO) and Fractional Generalized quasi-Synchronization (FGqS) to name but a few. This book is intended not only for applied mathematicians and theoretical physicists, but also for anyone in applied science dealing with complex nonlinear systems.
For the past 50 years, the advancements of technology have equipped architects with unique tools that have enabled the development of new computer-mediated design methods, fabrication techniques, and architectural expressions. Simultaneously, in contemporary architecture new frameworks emerged that have radically redefined the traditional conceptions of design, of the built environment, and of the role of architects. Cybernetic Architectures argues that such frameworks have been constructed in direct reference to cybernetic thinking, a thought model that emerged concurrently with the origins of informatics and that embodies the main assumptions, values, and ideals underlying the development of computer science. The book explains how the evolution of the computational perspective in architecture has been parallel to the construction of design issues in reference to the central ideas fostered by the cybernetic model. It unpacks and explains this crucial relationship, in the work of digital architects, between the use of information technology in design and the conception of architectural problems around an informational ontology. This book will appeal to architecture students and scholars interested in understanding the recent transformations in the architectural landscape related to the advent of computer-based design paradigms.
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.
The aim of this Book is to give an overview, based on the results of nearly three decades of intensive research, of transient chaos. One belief that motivates us to write this book is that, transient chaos may not have been appreciated even within the nonlinear-science community, let alone other scientific disciplines.
AI for Digital Warfare explores how the weaponising of artificial intelligence can and will change how warfare is being conducted, and what impact it will have on the corporate world. With artificial intelligence tools becoming increasingly advanced, and in many cases more humanlike, their potential in psychological warfare is being recognised, which means digital warfare can move beyond just shutting down IT systems into more all-encompassing hybrid war strategies.
Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.
Continuous System Simulation describes in detail how to build mathematical simulations of systems that change continuously over time. It covers: - numerical integration - simulation of stiff systems - simulation of marginally stable systems - simulation of noisy systems - model validation techniques - simulation verification - the inverse problem - dynamic nonlinear programming - simulation software - simulation hardware Intended for advanced undergraduates in electrical, computer, mechanical, and civil engineering, it is a highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Homework problems, suggestions for research projects, and open-ended questions conclude each chapter.
The main goal is to offer to readers a panorama of recent progress in nonlinear physics, complexity and transport with attractive chapters readable by a broad audience. It allows to gain an insight into these active fields of research and notably promotes the interdisciplinary studies from mathematics to experimental physics. To reach this aim, the book collects a selection of contributions to the third edition of the CCT conference (Marseilles, 1-5 June 2015).
This book presents Networked Control System (NCS) as a particular kind of a real-time distributed system (RTDS), composed of a set of nodes, interconnected by a network, and able to develop a complete control process. It describes important parts of the control process such as sensor and actuator activities, which rely on a real-time operating system, and a real-time communication network. As the use of common bus network architecture introduces different forms of uncertainties between sensors, actuators, and controllers, several approaches such as reconfigurable systems have been developed to tackle this problem. Moreover, modeling NCS is a challenging procedure, since there are several non-linear situations, like local saturations, uncertain time delays, dead-zones, or local situations, it is necessary to deal with. The book describes a novel strategy for modelling and control based on a fuzzy control approach and codesign strategies.
The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.
Adding one and one makes two, usually. But sometimes things add up to more than the sum of their parts. This observation, now frequently expressed in the maxim "more is different", is one of the characteristic features of complex systems and, in particular, complex networks. Along with their ubiquity in real world systems, the ability of networks to exhibit emergent dynamics, once they reach a certain size, has rendered them highly attractive targets for research. The resulting network hype has made the word "network" one of the most in uential buzzwords seen in almost every corner of science, from physics and biology to economy and social sciences. The theme of "more is different" appears in a different way in the present v- ume, from the viewpoint of what we call "adaptive networks." Adaptive networks uniquely combine dynamics on a network with dynamical adaptive changes of the underlying network topology, and thus they link classes of mechanisms that were previously studied in isolation. Here adding one and one certainly does not make two, but gives rise to a number of new phenomena, including highly robust se- organization of topology and dynamics and other remarkably rich dynamical beh- iors.
This book aims to provide the latest research developments and results in the domain of AI techniques for smart cyber ecosystems. It presents a holistic insight into AI-enabled theoretic approaches and methodology in IoT networking, security analytics using AI tools and network automation, which ultimately enable intelligent cyber space. This book will be a valuable resource for students, researchers, engineers and policy makers working in various areas related to cybersecurity and privacy for Smart Cities. This book includes chapters titled "An Overview of the Artificial Intelligence Evolution and Its Fundamental Concepts, and Their Relationship with IoT Security", "Smart City: Evolution and Fundamental Concepts", "Advances in AI-Based Security for Internet of Things in Wireless Virtualization Environment", "A Conceptual Model for Optimal Resource Sharing of Networked Microgrids Focusing Uncertainty: Paving Path to Eco-friendly Smart Cities", "A Novel Framework for a Cyber Secure Smart City", "Contemplating Security Challenges and Threats for Smart Cities", "Self-Monitoring Obfuscated IoT Network", "Introduction to Side Channel Attacks and Investigation of Power Analysis and Fault Injection Attack Techniques", "Collaborative Digital Forensic Investigations Model for Law Enforcement: Oman as a Case Study", "Understanding Security Requirements and Challenges in the Industrial Internet of Things: A Review", "5G Security and the Internet of Things", "The Problem of Deepfake Videos and How to Counteract Them in Smart Cities", "The Rise of Ransomware Aided by Vulnerable IoT Devices", "Security Issues in Self-Driving Cars within Smart Cities", and "Trust-Aware Crowd Associated Network-Based Approach for Optimal Waste Management in Smart Cities". This book provides state-of-the-art research results and discusses current issues, challenges, solutions and recent trends related to security and organization within IoT and Smart Cities. We expect this book to be of significant importance not only to researchers and practitioners in academia, government agencies and industries, but also for policy makers and system managers. We anticipate this book to be a valuable resource for all those working in this new and exciting area, and a "must have" for all university libraries.
Dynamic Programming for Impulse Feedback and Fast Controls offers a description of feedback control in the class of impulsive inputs. This book deals with the problem of closed-loop impulse control based on generalization of dynamic programming techniques in the form of variational inequalities of the Hamilton-Jacobi-Bellman type. It provides exercises and examples in relation to software, such as techniques for regularization of ill-posed problems. It also gives an introduction to applications such as hybrid dynamics, control in arbitrary small time, and discontinuous trajectories.This book walks the readers through: the design and description of feedback solutions for impulse controls; the explanation of impulses of higher order that are derivatives of delta functions; the description of their physically realizable approximations - the fast controls and their approximations; the treatment of uncertainty in impulse control and the applications of impulse feedback. Of interest to both academics and graduate students in the field of control theory and applications, the book also protects users from common errors , such as inappropriate solution attempts, by indicating Hamiltonian techniques for hybrid systems with resets.
Optimal Estimation of Dynamic Systems, Second Edition highlights the importance of both physical and numerical modeling in solving dynamics-based estimation problems found in engineering systems. Accessible to engineering students, applied mathematicians, and practicing engineers, the text presents the central concepts and methods of optimal estimation theory and applies the methods to problems with varying degrees of analytical and numerical difficulty. Different approaches are often compared to show their absolute and relative utility. The authors also offer prototype algorithms to stimulate the development and proper use of efficient computer programs. MATLAB(r) codes for the examples are available on the book s website. New to the Second Edition An ideal self-study guide for practicing engineers as well as senior undergraduate and beginning graduate students, the book introduces the fundamentals of estimation and helps newcomers to understand the relationships between the estimation and modeling of dynamical systems. It also illustrates the application of the theory to real-world situations, such as spacecraft attitude determination, GPS navigation, orbit determination, and aircraft tracking.
This book presents a detailed study on fractional-order, set-point, weighted PID control strategies and the development of curve-fitting-based approximation techniques for fractional-order parameters. Furthermore, in all the cases, it includes the Scilab-based commands and functions for easy implementation and better understanding, and to appeal to a wide range of readers working with the software. The presented Scilab-based toolbox is the first toolbox for fractional-order systems developed in open-source software. The toolboxes allow time and frequency domains as well as stability analysis of the fractional-order systems and controllers. The book also provides real-time examples of the control of process plants using the developed fractional-order based PID control strategies and the approximation techniques. The book is of interest to readers in the areas of fractional-order controllers, approximation techniques, process modeling, control, and optimization, both in industry and academia. In industry, the book is particularly valuable in the areas of research and development (R&D) as well as areas where PID controllers suffice - and it should be noted that around 80% of low-level controllers in industry are PID based. The book is also useful where conventional PIDs are constrained, such as in industries where long-term delay and non-linearity are present. Here it can be used for the design of controllers for real-time processes. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students. |
![]() ![]() You may like...
Advances in Data Science and Management…
Samarjeet Borah, Sambit Kumar Mishra, …
Hardcover
R7,186
Discovery Miles 71 860
Information and Communication Technology…
Simon Fong, Shyam Akashe, …
Hardcover
R5,756
Discovery Miles 57 560
Adapting Cognitive Behavioral Therapy…
Sara Nowakowski, Sheila Garland, …
Paperback
R3,222
Discovery Miles 32 220
Parental Roles and Relationships in…
Susan S. Chuang, Catherine L. Costigan
Hardcover
R2,904
Discovery Miles 29 040
Mobile Information Systems Leveraging…
Gloria Bordogna, Paola Carrara
Hardcover
R2,901
Discovery Miles 29 010
Provenance in Data Science - From Data…
Leslie F Sikos, Oshani W. Seneviratne, …
Hardcover
R3,890
Discovery Miles 38 900
Pattern Mining with Evolutionary…
Sebastian Ventura, Jose Maria Luna
Hardcover
R3,504
Discovery Miles 35 040
Computational Intelligence for Big Data…
D P Acharjya, Satchidananda Dehuri, …
Hardcover
|