![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. The ergodic theory of smooth dynamical systems is treated. Numerous examples are presented carefully along with the ideas underlying the most important results. Moreover, the book deals with the dynamical systems of statistical mechanics, and with various kinetic equations. For this second enlarged and revised edition, published as Mathematical Physics I, EMS 100, two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations were added. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it.
This book presents novel results by participants of the conference "Control theory of infinite-dimensional systems" that took place in January 2018 at the FernUniversitat in Hagen. Topics include well-posedness, controllability, optimal control problems as well as stability of linear and nonlinear systems, and are covered by world-leading experts in these areas. A distinguishing feature of the contributions in this volume is the particular combination of researchers from different fields in mathematics working in an interdisciplinary fashion on joint projects in mathematical system theory. More explicitly, the fields of partial differential equations, semigroup theory, mathematical physics, graph and network theory as well as numerical analysis are all well-represented.
This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem - suppressing traffic with stop-and-go oscillations downstream of ramp metering - before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail. Part II then extends the conventional ARZ model utilized until this point in order to address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included. Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.
This book focuses on how the BOXES Methodology, which is based on the work of Donald Michie, is applied to ill-defined real-time control systems with minimal a priori knowledge of the system. The method is applied to a variety of systems including the familiar pole and cart. This second edition includes a new section that covers some further observations and thoughts, problems, and evolutionary extensions that the reader will find useful in their own implementation of the method. This second edition includes a new section on how to handle jittering about a system boundary which in turn causes replicated run times to become part of the learning mechanism. It also addresses the aging of data values using a forgetfulness factor that causes wrong values of merit to be calculated. Another question that is addressed is "Should a BOXES cell ever be considered fully trained and, if so, excluded from further dynamic updates". Finally, it expands on how system boundaries may be shifted using data from many runs using an evolutionary paradigm.
This text provides one of the first book-length studies on the innovative and sustainable development of complex systems in the era of digital transformations, combining quantitative data from several countries with detailed qualitative accounts at the national level. In particular, the book covers the basic concepts, methods, and cutting-edge research on innovation and sustainability in complex systems. Given its scope, the book will be of great interest and value to researchers and practitioners working across the social sciences and in a diverse range of areas in complexity science. Pursuing a multidisciplinary approach, the book is also an ideal resource for advanced undergraduate and graduate level courses in complexity science, sustainability research, economics, and development studies.
This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.
This monograph is devoted to the analysis and solution of singular differential games and singular $H_{\inf}$ control problems in both finite- and infinite-horizon settings. Expanding on the authors' previous work in this area, this novel text is the first to study the aforementioned singular problems using the regularization approach. After a brief introduction, solvability conditions are presented for the regular differential games and $H_{\inf}$ control problems. In the following chapter, the authors solve the singular finite-horizon linear-quadratic differential game using the regularization method. Next, they apply this method to the solution of an infinite-horizon type. The last two chapters are dedicated to the solution of singular finite-horizon and infinite-horizon linear-quadratic $H_{\inf}$ control problems. The authors use theoretical and real-world examples to illustrate the results and their applicability throughout the text, and have carefully organized the content to be as self-contained as possible, making it possible to study each chapter independently or in succession. Each chapter includes its own introduction, list of notations, a brief literature review on the topic, and a corresponding bibliography. For easier readability, detailed proofs are presented in separate subsections. Singular Linear-Quadratic Zero-Sum Differential Games and $H_{\inf}$ Control Problems will be of interest to researchers and engineers working in the areas of applied mathematics, dynamic games, control engineering, mechanical and aerospace engineering, electrical engineering, and biology. This book can also serve as a useful reference for graduate students in these area
This book takes Complexity Theory and applies it to medicine where it has previously made little ground. It provides new hypotheses for multiple common but misunderstood diseases. Doctors in particular will understand that many diseases have remained unsolved due to a linear approach to what are complex biological systems, and failure to understand and apply Complexity Theory. Therefore, many common conditions have no known cause and consequently treatments are either ineffectual or non-existant, when many of these diseases are in fact preventable. There is growing interest in non-linear science, dynamic systems, chaos and complexity theory. This trend has directly involved other sciences, including biology, but has been little touched on by medicine. Readers of this book will: * Understand the difference between Linear Science and Complexity Theory, and how medicine has failed to apply the latter. * Recognise the advantages of using this understanding to generate realistic hypotheses for cause of disease. * Read how hypotheses so generated have been formulated for a number of common diseases.
This fascinating book examines some of the characteristics of
technological/engineering models that are likely to be unfamiliar
to those who are interested primarily in the history and philosophy
of science and mathematics, and which differentiate technological
models from scientific and mathematical ones. Themes that are
highlighted include:
As internet technologies continue to advance, new types and methods of data and security breaches threaten national security. These potential breaches allow for information theft and can provide footholds for terrorist and criminal organizations. Developments in Information Security and Cybernetic Wars is an essential research publication that covers cyberwarfare and terrorism globally through a wide range of security-related areas. Featuring topics such as crisis management, information security, and governance, this book is geared toward practitioners, academicians, government officials, military professionals, and industry professionals.
This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.
In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book's results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.
This book reflects the outcome of contribution by the plural community and of the interactions between disciplines. With the mass of data available through Information and Communication Technologies (ICT) in an unprecedented quantity since the Human History, it is now possible to access dimensions of knowledge that, though not hidden, could not be grasped in the same way in the past. The question of how this information can be used for the benefit of institutional and economic actors to foster the development of a territory. Tackling the issue from a resolutely interdisciplinary perspective, the authors explore the theories and methods of complex systems in order to discuss how they can contribute in these new circumstances to territorial intelligence and to the development practices in which it is embodied. This book illustrates how today's research explores the multiple facets of territorial systems in order to reproduce their richness. It invites readers to learn about the challenges, ideas, results and advances present in this domain.
This book extrapolates many of the concepts that are well defined for discrete-time deterministic sliding-mode control for use with discrete-time stochastic systems. It details sliding-function designs for various categories of linear time-invariant systems and its application for control. The resulting sliding-mode control addresses robustness issues and the functional-observer approach reduces the observer order substantially. Sliding-mode control (SMC) is designed for discrete-time stochastic systems, extended so that states lie within a specified band, and able to deal with incomplete information. Functional-observer-based SMC is designed for various clauses of stochastic systems: discrete-time; discrete-time with delay; state time-delayed; and those with parametric uncertainty. Stability considerations arising because of parametric uncertainty are taken into account and, where necessary, the effects of unmatched uncertainties mitigated. A simulation example is used to explain the use of the functional-observer approach to SMC design. Discrete-Time Stochastic Sliding-Mode Control Using Functional Observation will interest all researchers working in sliding-mode control and will be of particular assistance to graduate students in understanding the changes in design philosophy that arise when changing from continuous- to discrete-time systems. It helps to pave the way for further progress in applications of discrete-time SMC.
To a large extent, our lives on this earth depend on systems that operate auto matically. Manysuchsystems can be found in nature and others are man made. These systems can be biological, electrical, mechanical, chemical, or ecological, to namejust a few categories. Our human body is full ofsystems whose conti nued automatic operation is vital for our existence. On a daily basis we come in contact with man made systems whose automatic operation ensures increa sed productivity, promotes economic development and improves the quality of life. A primary component that is responsible for the automatic operation of a system is a device or mechanism called the controller. In man made systems one must first design and then implement such a controller either as a piece of hardware or as software code in a computer. The safe and efficient automatic operation of such systems is testimony to the success of control theorists and practitioners over the years. This book presents new methods {or controller design. The process ofdeveloping a controller or control strategy can be dramatically improved if one can generate an appropriate dynamic model for the system under consideration. Robust control design deals with the question of how to develop such controllers for system models with uncertainty. In many cases dynamic models can be expressed in terms oflinear, time invariant differential equations or transfer functions."
Why is it that many large public projects run out of control in terms of scope, budget and time? How can it be explained that urban regeneration programs are highly successful in one neighborhood but fail to deliver in an adjacent neighborhood? Why is it that public policies can return unexpected and sometimes even unwanted outcomes, despite meticulous planning? Why is public decision-making such a complex affair? The world is an erratic place, full of surprises, some of which are wanted and others are unwanted. Public decision-making in this world is like punching clouds: considerable energy is put into the punching but the cloud goes its own way, despite the punches. Recent ideas and insights from the complexity sciences improve our understanding of the intricate nature of public decision-making. This book offers a bridge between the study of public decision-making in the domain of Public Administration on the one hand, and the complexity sciences on the other hand. It is aimed at (doctoral) students and scholars in Public Administration who are curious about how the complexity sciences can inform the analysis and understanding of public decision-making. The book introduces important concepts such as systems, non-linear dynamics, self-organization and coevolution, and discusses their relevance to public decision-making. It also proposes a case-based research method for researching this complexity. Lasse Gerrits, Ph.D. is associate professor in Public Administration at the Erasmus University Rotterdam (the Netherlands) and member of the research group Governance of Complex Systems.
This book develops analytical methods for studying the dynamical chaos, synchronization, and dynamics of structures in various models of coupled rotators. Rotators and their systems are defined in a cylindrical phase space, and, unlike oscillators, which are defined in Rn, they have a wider "range" of motion: There are vibrational and rotational types for cyclic variables, as well as their combinations (rotational-vibrational) if the number of cyclic variables is more than one. The specificity of rotator phase space poses serious challenges in terms of selecting methods for studying the dynamics of related systems. The book chiefly focuses on developing a modified form of the method of averaging, which can be used to study the dynamics of rotators. In general, the book uses the "language" of the qualitative theory of differential equations, point mappings, and the theory of bifurcations, which helps authors to obtain new results on dynamical chaos in systems with few degrees of freedom. In addition, a special section is devoted to the study and classification of dynamic structures that can occur in systems with a large number of interconnected objects, i.e. in lattices of rotators and/or oscillators. Given its scope and format, the book can be used both in lectures and courses on nonlinear dynamics, and in specialized courses on the development and operation of relevant systems that can be represented by a large number of various practical systems: interconnected grids of various mechanical systems, various types of networks including not only mechanical but also biological systems, etc.
This innovative monograph explores a new mathematical formalism in higher-order temporal logic for proving properties about the behavior of systems. Developed by the authors, the goal of this novel approach is to explain what occurs when multiple, distinct system components interact by using a category-theoretic description of behavior types based on sheaves. The authors demonstrate how to analyze the behaviors of elements in continuous and discrete dynamical systems so that each can be translated and compared to one another. Their temporal logic is also flexible enough that it can serve as a framework for other logics that work with similar models. The book begins with a discussion of behavior types, interval domains, and translation invariance, which serves as the groundwork for temporal type theory. From there, the authors lay out the logical preliminaries they need for their temporal modalities and explain the soundness of those logical semantics. These results are then applied to hybrid dynamical systems, differential equations, and labeled transition systems. A case study involving aircraft separation within the National Airspace System is provided to illustrate temporal type theory in action. Researchers in computer science, logic, and mathematics interested in topos-theoretic and category-theory-friendly approaches to system behavior will find this monograph to be an important resource. It can also serve as a supplemental text for a specialized graduate topics course.
This book is a novel tutorial for research-oriented study of vibration mechanics. The book begins with twelve open problems from six case studies of vibration mechanics in order to guide readers in studying the entire book. Then, the book surveys both theories and methods of linear vibrations in an elementary course from a new perspective of aesthetics of science so as to assist readers to upgrade their way of learning. The successive chapters offer a theoretical frame of linear vibrations and waves, covering the models of vibration systems, the vibration analysis of discrete systems, the natural vibrations of one-dimensional structures, the natural vibrations of symmetric structures, and the waves and vibrations of one-dimensional structures. The chapters help readers solve the twelve open problems step by step during the research-oriented study. The book tries to arouse the interest of graduate students and professionals, who have learnt an elementary course of vibration mechanics of two credits, to conduct the research-oriented study and achieve a helical upgrade understanding to vibration mechanics.
Design automation of electronic and hybrid systems is a steadily growing field of interest and a permanent challenge for researchers in Electronics, Computer Engineering and Computer Science. System Design Automation presents some recent results in design automation of different types of electronic and mechatronic systems. It deals with various topics of design automation, ranging from high level digital system synthesis, through analogue and heterogeneous system analysis and design, up to system modeling and simulation. Design automation is treated from the aspects of its theoretical fundamentals, its basic approach and its methods and tools. Several application cases are presented in detail. The book consists of three chapters: High-Level System Synthesis (Digital Hardware/Software Systems). Here embedded systems, distributed systems and processor arrays as well as hardware-software codesign are treated. Also three special application cases are discussed in detail; Analog and Heterogeneous System Design (System Approach and Methodology). This chapter copes with the analysis and design of hybrid systems comprised of analog and digital, electronic and mechanical components; System Simulation and Evaluation (Methods and Tools). In this chapter object-oriented Modelling, analog system simulation including fault-simulation, parameter optimization and system validation are regarded. The contents of the book are based on material presented at the Workshop System Design Automation (SDA 2000) organised by the Sonderforschungsbereich 358 of the Deutsche Forschungsgemeinschaft at TU Dresden.
The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques.
"Fault-Tolerant Process Control" focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: .A framework for detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; . Controller reconfiguration and safe-parking-based fault-handling methodologies; . Integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; . Methods for handling sensor faults and data losses; and . Methods for monitoring the performance of low-level PID loops. The methodologies proposed employ nonlinear systems analysis, Lyapunov techniques, optimization, statistical methods and hybrid systems theory and are predicated upon the idea of integrating fault-detection, local feedback control, and supervisory control. The applicability and performance of the methods are demonstrated through a number of chemical process examples. "Fault-Tolerant Process Control" is a valuable resource for academic researchers, industrial practitioners as well as graduate students pursuing research in this area."
This book aims to extend existing works on consensus of multi-agent systems systematically. The agents to be considered range from double integrators to generic linear systems. The primary goal is to explicitly characterize how agent parameters, which reflect both self-dynamics and inner coupling of each agent, and switching network topologies jointly influence the collective behaviors. A series of necessary and/or sufficient conditions for exponential consensus are derived. The contents of this book are as follows. Chapter 1 provides the background and briefly reviews the advances of consensus of multi-agent systems. Chapter 2 addresses the consensus problem of double integrators over directed switching network topologies. It is proven that exponential consensus can be secured under very mild conditions incorporating the damping gain and network topology. Chapter 3 considers generic linear systems with undirected switching network topologies. Necessary and sufficient conditions on agent parameters and connectivity of the communication graph for exponential consensus are provided. Chapter 4 furthers the study of consensus for multiple generic linear systems by considering directed switching network topologies. How agent parameters and joint connectivity work together for reaching consensus is characterized from an algebraic and geometric view. Chapter 5 extends the design and analysis methodology to containment control problem, where there exist multiple leaders. A novel analysis framework from the perspective of state transition matrix is developed. This framework relates containment to consensus and overcomes the difficulty of construction of a containment error. This book serves as a reference to the main research issues and results on consensus of multi-agent systems. Some prerequisites for reading this book include linear system theory, matrix theory, mathematics, and so on.
This textbook helps graduate level student to understand easily the linearization of nonlinear control system. Differential geometry is essential to understand the linearization problems of the control nonlinear systems. In this book, the basics of differential geometry needed in linearization are explained on the Euclidean space instead of the manifold for students who are not accustomed to differential geometry. Many Lie algebra formulas, used often in linearization, are also provided with proof. The conditions in the linearization problems are complicated to check because the Lie bracket calculation of vector fields by hand needs much concentration and time. This book provides MATLAB programs for most of the theorems. The book also includes end-of-chapter problems and other pedagogical aids to help understanding and self study.
This book explores event-based estimation problems. It shows how several stochastic approaches are developed to maintain estimation performance when sensors perform their updates at slower rates only when needed. The self-contained presentation makes this book suitable for readers with no more than a basic knowledge of probability analysis, matrix algebra and linear systems. The introduction and literature review provide information, while the main content deals with estimation problems from four distinct angles in a stochastic setting, using numerous illustrative examples and comparisons. The text elucidates both theoretical developments and their applications, and is rounded out by a review of open problems. This book is a valuable resource for researchers and students who wish to expand their knowledge and work in the area of event-triggered systems. At the same time, engineers and practitioners in industrial process control will benefit from the event-triggering technique that reduces communication costs and improves energy efficiency in wireless automation applications. |
![]() ![]() You may like...
Architectural Intelligence - Selected…
Philip F. Yuan, Mike Xie, …
Hardcover
R4,392
Discovery Miles 43 920
Translation Quality Assessment - From…
Joss Moorkens, Sheila Castilho, …
Hardcover
R4,888
Discovery Miles 48 880
The Art and Science of Machine…
Walker H. Land Jr., J. David Schaffer
Hardcover
R4,378
Discovery Miles 43 780
Automated Machine Learning
Joaquin Vanschoren, Lars Kotthoff, …
Hardcover
R1,463
Discovery Miles 14 630
Computer and Intrusion Forensics
George Mohay, Alison Anderson, …
Hardcover
R2,797
Discovery Miles 27 970
Hacking Web Intelligence - Open Source…
Sudhanshu Chauhan, Nutan Kumar Panda
Paperback
R1,280
Discovery Miles 12 800
|