![]() |
![]() |
Your cart is empty |
||
Books > Reference & Interdisciplinary > Communication studies > Information theory > Cybernetics & systems theory
The disciplines of computer science and operations research (OR) have been linked since their origins, each contributing to the dramatic advances of the other. This work explores the connections between these key technologies: how high-performance computing methods have led to advances in OR de ployment, and how OR has contributed to the design and development of ad vanced systems. The collected writings-from researchers and practitioners in Computer Science, Operations Research, Management Science, and Artificial Intelligence-were among those delivered at the Fifth INFORMS Computer Science Technical Section Conference in Dallas, Texas, January 8-10, 1996. The articles advance both theory and practice. Presented are new approaches to complex problems based on: metaheuristics (neural networks, genetic al gorithms, and Tabu Search), optimization and mathematical programming, stochastic methods, constraint programming, and logical analysis. These ad vanced methodologies are applied to new applications in such areas as: telecom munications network design, financial engineering, manufacturing, project man agement, and forecasting, airline and machine scheduling, vehicle routing, mod eling and decision support systems. Featured is a remarkable paper by keynote speaker Fred Glover, creator of the Tabu Search family of metaheuristics. In it he develops the principles of memory-based heuristic methods, contrasts them with the popular genetic algorithms and simulated annealing, provides a sweeping survey of application vignettes, and points to promising avenues for future research."
This monograph explores a dual variational formulation of solutions to nonlinear diffusion equations with general nonlinearities as null minimizers of appropriate energy functionals. The author demonstrates how this method can be utilized as a convenient tool for proving the existence of these solutions when others may fail, such as in cases of evolution equations with nonautonomous operators, with low regular data, or with singular diffusion coefficients. By reducing it to a minimization problem, the original problem is transformed into an optimal control problem with a linear state equation. This procedure simplifies the proof of the existence of minimizers and, in particular, the determination of the first-order conditions of optimality. The dual variational formulation is illustrated in the text with specific diffusion equations that have general nonlinearities provided by potentials having various stronger or weaker properties. These equations can represent mathematical models to various real-world physical processes. Inverse problems and optimal control problems are also considered, as this technique is useful in their treatment as well.
Dynamical models on graphs or random graphs are increasingly used in applied sciences as mathematical tools to study complex systems whose exact structure is too complicated to be known in detail. Besides its importance in applied sciences, the field is increasingly attracting the interest of mathematicians and theoretical physicists also because of the fundamental phenomena (synchronization, phase transitions etc.) that can be studied in the relatively simple framework of dynamical models of random graphs. This volume was developed from the Mathematical Technology of Networks conference held in Bielefeld, Germany in December 2013. The conference was designed to bring together functional analysts, mathematical physicists, and experts in dynamical systems. The contributors to this volume explore the interplay between theoretical and applied aspects of discrete and continuous graphs. Their work helps to close the gap between different avenues of research on graphs, including metric graphs and ramified structures.
This book presents a concise study of controllability theory of partial differential equations when they are equipped with actuators and/or sensors that are finite dimensional at every moment of time. Based on the author's extensive research in the area of controllability theory, this monograph specifically focuses on the issues of controllability, observability, and stabilizability for parabolic and hyperbolic partial differential equations. The topics in this book also cover related applied questions such as the problem of localization of unknown pollution sources based on information obtained from point sensors that arise in environmental monitoring. Researchers and graduate students interested in controllability theory of partial differential equations and its applications will find this book to be an invaluable resource to their studies.
Linguistic Geometry: From Search to Construction is the first book of its kind. Linguistic Geometry (LG) is an approach to the construction of mathematical models for large-scale multi-agent systems. A number of such systems, including air/space combat, robotic manufacturing, software re-engineering and Internet cyberwar, can be modeled as abstract board games. These are games with moves that can be represented by the movement of abstract pieces over locations on an abstract board. The purpose of LG is to provide strategies to guide the games' participants to their goals. Traditionally, discovering such strategies required searches in giant game trees. These searches are often beyond the capacity of modern and even conceivable future computers. LG dramatically reduces the size of the search trees, making the problems computationally tractable. LG provides a formalization and abstraction of search heuristics used by advanced experts including chess grandmasters. Essentially, these heuristics replace search with the construction of strategies. To formalize the heuristics, LG employs the theory of formal languages (i.e. formal linguistics), as well as certain geometric structures over an abstract board. The new formal strategies solve problems from different domains far beyond the areas envisioned by the experts. For a number of these domains, Linguistic Geometry yields optimal solutions.
This book provides robust analysis and synthesis tools for Markovian jump systems in the finite-time domain with specified performances. It explores how these tools can make the systems more applicable to fields such as economic systems, ecological systems and solar thermal central receivers, by limiting system trajectories in the desired bound in a given time interval. Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain focuses on multiple aspects of finite-time stability and control, including: finite-time H-infinity control; finite-time sliding mode control; finite-time multi-frequency control; finite-time model predictive control; and high-order moment finite-time control for multi-mode systems and also provides many methods and algorithms to solve problems related to Markovian jump systems with simulation examples that illustrate the design procedure and confirm the results of the methods proposed. The thorough discussion of these topics makes the book a useful guide for researchers, industrial engineers and graduate students alike, enabling them systematically to establish the modeling, analysis and synthesis for Markovian jump systems in the finite-time domain.
One service mathematics has rendered the 'Bt mm, ... si j'avait su comment en revenir, human race. It has put common sense back je n'y serais point alIe.' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heavisidc Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.
Markov decision process (MDP) models are widely used for modeling
sequential decision-making problems that arise in engineering,
economics, computer science, and the social sciences. Many
real-world problems modeled by MDPs have huge state and/or action
spaces, giving an opening to the curse of dimensionality and so
making practical solution of the resulting models intractable. In
other cases, the system of interest is too complex to allow
explicit specification of some of the MDP model parameters, but
simulation samples are readily available (e.g., for random
transitions and costs). For these settings, various sampling and
population-based algorithms have been developed to overcome the
difficulties of computing an optimal solution in terms of a policy
and/or value function. Specific approaches include adaptive
sampling, evolutionary policy iteration, evolutionary random policy
search, and model reference adaptive search.
This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems.
The DARPA Grand Challenge was a landmark in the field of robotics: a race by autonomous vehicles through 132 miles of rough Nevada terrain. It showcased exciting and unprecedented capabilities in robotic perception, navigation, and control. The event took place in October 2005 and drew teams of competitors from academia and industry, as well as many garage hobbyists. This book presents fifteen technical papers that describe each team's driverless vehicle, race strategy, and insights. As a whole, they present the state of the art in autonomous vehicle technology and offer a glimpse of future technology for tomorrow 's driverless cars.
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.
Optical networks epitomize complex communication systems, and they comprise the Internet s infrastructural backbone. The first of its kind, this book develops the mathematical framework needed from a control perspective to tackle various game-theoretical problems in optical networks. In doing so, it aims to help design control algorithms that optimally allocate the resources of these networks. With its fresh problem-solving approach, Game Theory in Optical Networks is a unique resource for researchers, practitioners, and graduate students in applied mathematics and systems/control engineering, as well as those in electrical and computer engineering."
With the advent and increasing popularity of Computer Supported Collaborative Learning (CSCL) and e-learning technologies, the need of "automatic assessment "and" "of" teacher/tutor support" for the two tightly intertwined activities of "comprehension" of reading materials and of "collaboration" among peers has grown significantly. In this context, a polyphonic model of discourse derived from Bakhtin s work as a paradigm is used for analyzing both general texts and CSCL conversations in a unique framework focused on different facets of textual cohesion. As specificity of our analysis, the "individual learning" perspective is focused on the identification of reading strategies and on providing a multi-dimensional textual complexity model, whereas the "collaborative learning" dimension is centered on the evaluation of participants involvement, as well as on collaboration assessment. Our approach based on advanced Natural Language Processing techniques provides a qualitative estimation of the learning process and enhances understanding as a mediator of learning by providing automated feedback to both learners and teachers or tutors. The main benefits are its flexibility, extensibility and nevertheless specificity for covering multiple stages, starting from reading classroom materials, to discussing on specific topics in a collaborative manner and finishing the feedback loop by verbalizing metacognitive thoughts."
This book presents the most important findings from the 9th International Conference on Modelling, Identification and Control (ICMIC'17), held in Kunming, China on July 10-12, 2017. It covers most aspects of modelling, identification, instrumentation, signal processing and control, with a particular focus on the applications of research in multi-agent systems, robotic systems, autonomous systems, complex systems, and renewable energy systems. The book gathers thirty comprehensively reviewed and extended contributions, which help to promote evolutionary computation, artificial intelligence, computation intelligence and soft computing techniques to enhance the safety, flexibility and efficiency of engineering systems. Taken together, they offer an ideal reference guide for researchers and engineers in the fields of electrical/electronic engineering, mechanical engineering and communication engineering.
Feedback Control Systems: A Fast Track Guide for Scientists and Engineers is an essential reference tool for: Electrical, mechanical and aerospace engineers who are developing or improving products, with a need to use feedback control systems. Faculty and graduate students in the fields of engineering and experimental science (e.g., physics) who are building their own high-performance measuring/test arrangements. Faculties teaching laboratory courses in engineering and measurement techniques, and the students taking those courses. Practising engineers, scientists, and students who need a quick intuitive education in the issues related to feedback control systems. Key features of Feedback Control Systems: The contents and the layout of the book are structured to ensure satisfactory proficiency for the novice designer. The authors provide the reader with a simple yet powerful method for designing control systems using several sensors or actuators. It offers a comprehensive control system troubleshooting and performance testing guide. From the reviewers: Control systems are ubiquitous and their use would be even more widespread if more people were competent in designing them. This book will play a valuable role in expanding the cadre of competent designers. This is a book that needed to be written, and its presentation is different from any other book on controls intended for a wide community of engineers and scientists. The book breaks the common clichA(c) of style in the control literature that tends toward mathematical formality. Instead, the emphasis is on intuition and practical advice. The book contains a very valuable and novel heuristic treatment of the subject. .. one of the bestexamples of a book that describes the design cycle. The book will help satisfy the demand among practising engineers for a good introduction to control systems.
Shortly after the end of World War II high-speed digital computing machines were being developed. It was clear that the mathematical aspects of com putation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D. C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solu tions of simultaneous linear equations and on the determination of eigen values. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaus sian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We dis covered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D."
This open access proceedings volume brings selected, peer-reviewed contributions presented at the Stochastic Transport in Upper Ocean Dynamics (STUOD) 2021 Workshop, held virtually and in person at the Imperial College London, UK, September 20-23, 2021. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA) and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation and oceanography.
This book includes two objectives. The first goal is to present advances and developments which have proved to be effective in their application to several complex problems. The second objective is to present the performance comparison of various metaheuristic techniques when they face complex optimization problems. The material has been compiled from a teaching perspective. Most of the problems in science, engineering, economics, and other areas can be translated as an optimization or a search problem. According to their characteristics, some problems can be simple that can be solved by traditional optimization methods based on mathematical analysis. However, most of the problems of practical importance in engineering represent complex scenarios so that they are very hard to be solved by using traditional approaches. Under such circumstances, metaheuristic has emerged as the best alternative to solve this kind of complex formulations. This book is primarily intended for undergraduate and postgraduate students. Engineers and application developers can also benefit from the book contents since it has been structured so that each chapter can be read independently from the others, and therefore, only potential interesting information can be quickly available for solving an industrial problem at hand.
In the study of the computational structure of biological/robotic sensorimotor systems, distributed models have gained center stage in recent years, with a range of issues including self-organization, non-linear dynamics, field computing etc. This multidisciplinary research area is addressed here by a multidisciplinary team of contributors, who provide a balanced set of articulated presentations which include reviews, computational models, simulation studies, psychophysical, and neurophysiological experiments. The book is divided into three parts, each characterized by a slightly different focus: in part I, the major theme concerns computational maps which typically model cortical areas, according to a view of the sensorimotor cortex as "geometric engine" and the site of "internal models" of external spaces. Part II also addresses problems of self-organization and field computing, but in a simpler computational architecture which, although lacking a specialized cortical machinery, can still behave in a very adaptive and surprising way by exploiting the interaction with the real world. Finally part III is focused on the motor control issues related to the physical properties of muscular actuators and the dynamic interactions with the world. The reader will find different approaches on controversial issues, such as the role and nature of force fields, the need for internal representations, the nature of invariant commands, the vexing question about coordinate transformations, the distinction between hierachiacal and bi-directional modelling, and the influence of muscle stiffness.
The lectures contained in this book were presented at Harvard University in June 1979. The workshop at which they were presented was the third such on algebro-geometric methods. The first was held in 1973 in London and the emphasis was largely on geometric methods. The second was held at Ames Research Center-NASA in 1976. There again the emphasis was on geometric methods, but algebraic geometry was becoming a dominant theme. In the two years after the Ames meeting there was tremendous growth in the applications of algebraic geometry to systems theory and it was becoming clear that much of the algebraic systems theory was very closely related to the geometric systems theory. On this basis we felt that this was the right time to devote a workshop to the applications of algebra and algebraic geometry to linear systems theory. The lectures contained in this volume represent all but one of the tutorial lectures presented at the workshop. The lec ture of Professor Murray Wonham is not contained in this volume and we refer the interested to the archival literature. This workshop was jointly sponsored by a grant from Ames Research Center-NASA and a grant from the Advanced Study Institute Program of NATO. We greatly appreciate the financial support rendered by these two organizations. The American Mathematical Society hosted this meeting as part of their Summer Seminars in Applied Mathematics and will publish the companion volume of con tributed papers."
This book contains all refereed papers that were accepted to the fifth edition of the " Complex Systems Design & Management " (CSD&M 2014) international conference which took place in Paris (France) on the November 12-14, 2014. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, transportation & systems, defense & security, electronics & robotics, energy & environment, health & welfare services, software & e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2014 conference is organized under the guidance of the CESAMES non-profit organization, address: CESAMES, 8 rue de Hanovre, 75002 Paris, France.
This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
This volume presents the proceedings of the 12th IFToMM International Symposium on Science of Mechanisms and Machines (SYROM 2017), that was held in "Gheorghe Asachi" Technical University of Iasi, Romania, November 02-03, 2017. It contains applications of mechanisms in several modern technical fields such as mechatronics and robotics, biomechanics, machines and apparatus. The book presents original high-quality contributions on topics related to mechanisms within aspects of theory, design, practice and applications in engineering, including but not limited to: theoretical kinematics, computational kinematics, mechanism design, experimental mechanics, mechanics of robots, dynamics of machinery, dynamics of multi-body systems, control issues of mechanical systems, mechanisms for biomechanics, novel designs, mechanical transmissions, linkages and manipulators, micro-mechanisms, teaching methods, history of mechanism science, industrial and non-industrial applications. In connection with these fields, the book combines the theoretical results with experimental tests. |
![]() ![]() You may like...
Force and Position Control of…
Tong Heng Lee, Wenyu Liang, …
Hardcover
R4,134
Discovery Miles 41 340
Machine Learning for Cyber Physical…
Oliver Niggemann, Christian Kuhnert, …
Hardcover
R1,357
Discovery Miles 13 570
Computer Aided Verification
Hana Chockler, Georg Weissenbacher
Hardcover
R2,205
Discovery Miles 22 050
Handbook of Research on Applied…
Snehanshu Saha, Abhyuday Mandal, …
Hardcover
R6,758
Discovery Miles 67 580
|