![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
The two volume set LNAI 8481 and 8482 constitutes the refereed conference proceedings of the 27th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2014, held in Kaohsiung, Taiwan, in June 2014. The total of 106 papers selected for the proceedings were carefully reviewed and selected from various submissions. The papers deal with a wide range of topics from applications of applied intelligent systems to solve real-life problems in all areas including engineering, science, industry, automation and robotics, business and finance, medicine and biomedicine, bioinformatics, cyberspace and human-machine interaction.
This book constitutes the refereed proceedings of the 10th IEEE International Conference Beyond Databases, Architectures, and Structures, BDAS 2014, held in Ustron, Poland, in May 2014. This book consists of 56 carefully revised selected papers that are assigned to 11 thematic groups: query languages, transactions and query optimization; data warehousing and big data; ontologies and semantic web; computational intelligence and data mining; collective intelligence, scheduling, and parallel processing; bioinformatics and biological data analysis; image analysis and multimedia mining; security of database systems; spatial data analysis; applications of database systems; Web and XML in database systems.
The latest inventions in internet technology influence most of business and daily activities. Internet security, internet data management, web search, data grids, cloud computing, and web-based applications play vital roles, especially in business and industry, as more transactions go online and mobile. Issues related to ubiquitous computing are becoming critical. Internet technology and data engineering should reinforce efficiency and effectiveness of business processes. These technologies should help people make better and more accurate decisions by presenting necessary information and possible consequences for the decisions. Intelligent information systems should help us better understand and manage information with ubiquitous data repository and cloud computing. This book is a compilation of some recent research findings in Internet Technology and Data Engineering. This book provides state-of-the-art accounts in computational algorithms/tools, database management and database technologies, intelligent information systems, data engineering applications, internet security, internet data management, web search, data grids, cloud computing, web-based application, and other related topics.
This book constitutes the refereed proceedings of the Pacific Asia Workshop on Intelligence and Security Informatics, PAISI 2014, held in Tainan, Taiwan, in May 2014 in conjunction with PAKDD 2014, the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining. The 7 revised full papers presented together with one short paper were carefully reviewed and selected from 10 submissions. The papers are organized in topical sections on regional data sets and case studies, cybercrime, information security engineering and text mining.
Introducing the fundamental concepts and algorithms of data mining Introduction to Data Mining, 2nd Edition, gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.
This book is the outcome of the Dagstuhl Seminar 13201 on Information Visualization - Towards Multivariate Network Visualization, held in Dagstuhl Castle, Germany in May 2013. The goal of this Dagstuhl Seminar was to bring together theoreticians and practitioners from Information Visualization, HCI and Graph Drawing with a special focus on multivariate network visualization, i.e., on graphs where the nodes and/or edges have additional (multidimensional) attributes. The integration of multivariate data into complex networks and their visual analysis is one of the big challenges not only in visualization, but also in many application areas. Thus, in order to support discussions related to the visualization of real world data, also invited researchers from selected application areas, especially bioinformatics, social sciences and software engineering. The unique "Dagstuhl climate" ensured an open and undisturbed atmosphere to discuss the state-of-the-art, new directions and open challenges of multivariate network visualization.
As urban congestion continues to be an ever increasing problem, routing in these settings has become an important area of operations research. This monograph provides cutting-edge research, utilizing the recent advances in technology, to quantify the value of dynamic, time-dependent information for advanced vehicle routing in city logistics. The methodology of traffic data collection is enhanced by GPS based data collection, resulting in a comprehensive number of travel time records. Data Mining is also applied to derive dynamic information models as required by time-dependent optimization. Finally, well-known approaches of vehicle routing are adapted in order to handle dynamic information models. This book interweaves the usually distinct areas of traffic data collection, information retrieval and time-dependent optimization by an integrated methodological approach, which refers to synergies of Data Mining and Operations Research techniques by example of city logistics applications. These procedures will help improve the reliability of logistics services in congested urban areas.
This edited volume addresses the vast challenges of adapting Online Social Media (OSM) to developing research methods and applications. The topics cover generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, behavior detection, mining social content for common trends, identifying and ranking social content sources, building friend-comprehension tools, and many others. Each of the ten chapters tackle one or more of these issues by proposing new analysis methods or new visualization techniques, or both, for famous OSM applications such as Twitter and Facebook. This collection of contributed chapters address these challenges. Online Social Media has become part of the daily lives of hundreds of millions of users generating an immense amount of 'social content'. Addressing the challenges that stem from this wide adaptation of OSM is what makes this book a valuable contribution to the field of social networks.
This text presents an overview of smart information systems for both the private and public sector, highlighting the research questions that can be studied by applying computational intelligence. The book demonstrates how to transform raw data into effective smart information services, covering the challenges and potential of this approach. Each chapter describes the algorithms, tools, measures and evaluations used to answer important questions. This is then further illustrated by a diverse selection of case studies reflecting genuine problems faced by SMEs, multinational manufacturers, service companies, and the public sector. Features: provides a state-of-the-art introduction to the field, integrating contributions from both academia and industry; reviews novel information aggregation services; discusses personalization and recommendation systems; examines sensor-based knowledge acquisition services, describing how the analysis of sensor data can be used to provide a clear picture of our world.
Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers. Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies
Biomarker discovery is an important area of biomedical research that may lead to significant breakthroughs in disease analysis and targeted therapy. Biomarkers are biological entities whose alterations are measurable and are characteristic of a particular biological condition. Discovering, managing, and interpreting knowledge of new biomarkers are challenging and attractive problems in the emerging field of biomedical informatics. This volumeis a collection of state-of-the-artresearch into the application of data mining to the discovery and analysis of new biomarkers. Presenting new results, models and algorithms, the included contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques. This volume is intended for students, and researchers in bioinformatics, proteomics, and genomics, as wellengineers and applied scientistsinterested in the interdisciplinary application of data mining techniques."
The textbook at hand aims to provide an introduction to the use of automated methods for gathering strategic competitiveintelligence. Hereby, the text does not describe a singleton research discipline in its own right, such as machine learning or Web mining. It rather contemplates an "application scenario," namely the gathering of knowledge that appears of paramount importance to organizations, e.g., companies and corporations. To this end, the book first summarizes the range of research disciplines that contribute to addressing the issue, extracting from each those grains that are of utmost relevance to the depicted application scope. Moreover, the book presents systems that put these techniques to practical use (e.g., reputation monitoring platforms) and takes an inductive approach to define the "gestalt" of mining for competitive strategic intelligence by selecting major use cases that are laid out and explained in detail. These pieces form the first part of the book. Each of those use cases is backed by a number of research papers, some of which are contained in its largely original version in the second part of the monograph. "
This book constitutes the thoroughly refereed post-workshop proceedings of the 5th International Workshop on Camera-Based Document Analysis and Recognition, CBDAR 2013, held in Washington, DC, USA, in August 2013. The 14 revised full papers presented were carefully selected during two rounds of reviewing and improvement from numerous original submissions. Intended to give a snapshot of the state-of-the-art research in the field of camera based document analysis and recognition, the papers are organized in topical sections on text detection and recognition in scene images and camera-based systems.
This book constitutes the refereed proceedings of the 27th Canadian Conference on Artificial Intelligence, Canadian AI 2014, held in Montreal, QC, Canada, in May 2014. The 22 regular papers and 18 short papers presented together with 3 invited talks were carefully reviewed and selected from 94 submissions. The papers cover a variety of topics within AI, such as: agent systems; AI applications; automated reasoning; bioinformatics and BioNLP; case-based reasoning; cognitive models; constraint satisfaction; data mining; E-commerce; evolutionary computation; games; information retrieval; knowledge representation; machine learning; multi-media processing; natural language processing; neural nets; planning; privacy-preserving data mining; robotics; search; smart graphics; uncertainty; user modeling; web applications.
This book contains the refereed proceedings of the 17th International Conference on Business Information Systems, BIS 2014, held in Larnaca, Cyprus, in May 2014. The BIS conference series follows trends in academic and business research; thus, the theme of the BIS 2014 conference was "Big Data: Problems Solved and Remaining Challenges." Currently, big data is one of the most prominent trends in areas such as recommendation engines, fraud detection, risk modeling, marketing campaign and social network analysis. The 22 revised full papers were carefully reviewed and selected from 58 submissions. They are grouped into sections on big data, business process management, ontologies and conceptual modeling, collaboration, service science and interoperability and specific BIS applications.
This book covers fundamental principles and computational approaches relevant to visual saliency computation. As an interdisciplinary problem, visual saliency computation is introduced in this book from an innovative perspective that combines both neurobiology and machine learning. The book is also well-structured to address a wide range of readers, from specialists in the field to general readers interested in computer science and cognitive psychology. With this book, a reader can start from the very basic question of "what is visual saliency?" and progressively explore the problems in detecting salient locations, extracting salient objects, learning prior knowledge, evaluating performance, and using saliency in real-world applications. It is highly expected that this book will spark a great interest of research in the related communities in years to come.
This book constitutes the thoroughly refereed and revised selected papers from the 9th International Workshop on Agents and Data Mining Interaction, ADMI 2013, held in Saint Paul, MN, USA in May 2013. The 10 papers presented in this volume were carefully selected for inclusion in the book and are organized in topical sections named agent mining and data mining.
This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite to build lexical resources such as dictionaries and ontologies and also has direct applications in automated text processing in fields such as history, healthcare and mobile applications, just to name a few. This volume gives an update in terms of the recent gains in text mining methods and reflects the most recent achievements with respect to the automatic build-up of large lexical resources. It addresses researchers that already perform text mining, and those who want to enrich their battery of methods. Selected articles can be used to support graduate-level teaching. The book is suitable for all readers that completed undergraduate studies of computational linguistics, quantitative linguistics, computer science and computational humanities. It assumes basic knowledge of computer science and corpus processing as well as of statistics.
This two-volume set, consisting of LNCS 8403 and LNCS 8404, constitutes the thoroughly refereed proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics, CICLing 2014, held in Kathmandu, Nepal, in April 2014. The 85 revised papers presented together with 4 invited papers were carefully reviewed and selected from 300 submissions. The papers are organized in the following topical sections: lexical resources; document representation; morphology, POS-tagging, and named entity recognition; syntax and parsing; anaphora resolution; recognizing textual entailment; semantics and discourse; natural language generation; sentiment analysis and emotion recognition; opinion mining and social networks; machine translation and multilingualism; information retrieval; text classification and clustering; text summarization; plagiarism detection; style and spelling checking; speech processing; and applications.
To large organizations, business intelligence (BI) promises the capability of collecting and analyzing internal and external data to generate knowledge and value, thus providing decision support at the strategic, tactical, and operational levels. BI is now impacted by the "Big Data" phenomena and the evolution of society and users. In particular, BI applications must cope with additional heterogeneous (often Web-based) sources, e.g., from social networks, blogs, competitors', suppliers', or distributors' data, governmental or NGO-based analysis and papers, or from research publications. In addition, they must be able to provide their results also on mobile devices, taking into account location-based or time-based environmental data. The lectures held at the Third European Business Intelligence Summer School (eBISS), which are presented here in an extended and refined format, cover not only established BI and BPM technologies, but extend into innovative aspects that are important in this new environment and for novel applications, e.g., pattern and process mining, business semantics, Linked Open Data, and large-scale data management and analysis. Combining papers by leading researchers in the field, this volume equips the reader with the state-of-the-art background necessary for creating the future of BI. It also provides the reader with an excellent basis and many pointers for further research in this growing field.
This book constitutes the refereed proceedings of the Third International Conference on Health Information Science, HIS 2014, held in Shenzhen, China, in April 2014. The 29 full papers presented were carefully reviewed and selected from 61 submissions. They cover a wide range of topics in health information sciences and systems that support the health information management and health service delivery. They deal with medical/health/biomedicine information resources, such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyse, and optimize the use of information in the health domain; data management, data mining, and knowledge discovery, all of which play a key role in the decision making, management of public health, examination of standards, privacy and security issues; computer visualization and artificial intelligence for computer-aided diagnosis; and development of new architectures and applications for health information systems.
The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data fusion algorithms are discussed, analyzed and evaluated. A reader will find answers to the following questions, among others: What are the key factors that affect the performance of data fusion algorithms significantly? What conditions are favorable to data fusion algorithms? CombSum and CombMNZ, which one is better? and why? What is the rationale of using the linear combination method? How can the best fusion option be found under any given circumstances?"
This, the 13th issue of Transactions on Large-Scale Data and Knowledge-Centered Systems, contains six revised selected regular papers. Topics covered include federated data sources, information filtering, web data clouding, query reformulation, package skyline queries and SPARQL query processing over a LaV (Local-as-View) integration system.
This book presents recent advances in Knowledge discovery in databases (KDD) with a focus on the areas of market basket database, time-stamped databases and multiple related databases. Various interesting and intelligent algorithms are reported on data mining tasks. A large number of association measures are presented, which play significant roles in decision support applications. This book presents, discusses and contrasts new developments in mining time-stamped data, time-based data analyses, the identification of temporal patterns, the mining of multiple related databases, as well as local patterns analysis.
This book constitutes the refereed proceedings at PAKDD Workshops 2014, held in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Tainan, Taiwan, in May 2014. The 73 revised papers presented were carefully reviewed and selected from 179 submissions. The workshops affiliated with PAKDD 2014 include: Data Analytics for Targeted Healthcare, DANTH; Data Mining and Decision Analytics for Public Health and Wellness, DMDA-Health; Biologically Inspired Data Mining Techniques, BDM; Mobile Data Management, Mining, and Computing on Social Networks, MobiSocial; Big Data Science and Engineering on E-Commerce, BigEC; Cloud Service Discovery, CloudSD; Mobile Sensing, Mining and Visualization for Human Behavior Inferences, MSMV-HBI; Scalable Dats Analytics: Theory and Algorithms, SDA; Algorithms for Large-Scale Information Processing in Knowledge Discovery, ALSIP; Data Mining in Social Networks, SocNet; Data Mining in Biomedical Informatics and Healthcare, DMBIH; and Pattern Mining and Application of Big Data, BigPMA. |
![]() ![]() You may like...
Organization Development And Change
Thomas G. Cummings, Christopher G Worley, …
Paperback
The President's Daily Brief Fifty Years…
Central Intelligence Agency
Hardcover
R778
Discovery Miles 7 780
|