![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
Big Data and Smart Service Systems presents the theories and applications regarding Big Data and smart service systems, data acquisition, smart cities, business decision-making support, and smart service design. The rapid development of computer and Internet technologies has led the world to the era of Big Data. Big Data technologies are widely used, which has brought unprecedented impacts on traditional industries and lifestyle. More and more governments, business sectors, and institutions begin to realize data is becoming the most valuable asset and its analysis is becoming the core competitiveness.
Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.
Clinical Decision Support and Beyond: Progress and Opportunities in Knowledge-Enhanced Health and Healthcare, now in its third edition, discusses the underpinnings of effective, reliable, and easy-to-use clinical decision support systems at the point of care as a productive way of managing the flood of data, knowledge, and misinformation when providing patient care. Incorporating CDS into electronic health record systems has been underway for decades; however its complexities, costs, and user resistance have lagged its potential. Thus it is of utmost importance to understand the process in detail, to take full advantage of its capabilities. The book expands and updates the content of the previous edition, and discusses topics such as integration of CDS into workflow, context-driven anticipation of needs for CDS, new forms of CDS derived from data analytics, precision medicine, population health, integration of personal monitoring, and patient-facing CDS. In addition, it discusses population health management, public health CDS and CDS to help reduce health disparities. It is a valuable resource for clinicians, practitioners, students and members of medical and biomedical fields who are interested to learn more about the potential of clinical decision support to improve health and wellness and the quality of health care.
Opinion Mining and Text Analytics on Literary Works and Social Media introduces the use of artificial intelligence and big data analytics techniques which can apply opinion mining and text analytics on literary works and social media. This book focuses on theories, method and approaches in which data analytic techniques can be used to analyze data from social media, literary books, novels, news, texts, and beyond to provide a meaningful pattern. The subject area of this book is multidisciplinary; related to data science, artificial intelligence, social science and humanities, and literature. This is an essential resource for scholars, Students and lecturers from various fields of data science, artificial intelligence, social science and humanities, and literature, university libraries, new agencies, and many more.
This updated compendium provides the linear algebra background necessary to understand and develop linear algebra applications in data mining and machine learning.Basic knowledge and advanced new topics (spectral theory, singular values, decomposition techniques for matrices, tensors and multidimensional arrays) are presented together with several applications of linear algebra (k-means clustering, biplots, least square approximations, dimensionality reduction techniques, tensors and multidimensional arrays).The useful reference text includes more than 600 exercises and supplements, many with completed solutions and MATLAB applications.The volume benefits professionals, academics, researchers and graduate students in the fields of pattern recognition/image analysis, AI, machine learning and databases.
The emergence of new technologies within the industrial revolution has transformed businesses to a new socio-digital era. In this new era, businesses are concerned with collecting data on customer needs, behaviors, and preferences for driving effective customer engagement and product development, as well as for crucial decision making. However, the ever-shifting behaviors of consumers provide many challenges for businesses to pinpoint the wants and needs of their audience. Consumer Behavior Change and Data Analytics in the Socio-Digital Era focuses on the concepts, theories, and analytical techniques to track consumer behavior change. It provides multidisciplinary research and practice focusing on social and behavioral analytics to track consumer behavior shifts and improve decision making among businesses. Covering topics such as consumer sentiment analysis, emotional intelligence, and online purchase decision making, this premier reference source is a timely resource for business executives, entrepreneurs, data analysts, marketers, advertisers, government officials, social media professionals, libraries, students and educators of higher education, researchers, and academicians.
Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, "Big Data," the book moves on to discuss every stage of the lifecycle of Big Data. You'll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You'll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you'll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.
The success of many companies through the assistance of bitcoin proves that technology continually dominates and transforms how economics operate. However, a deeper, more conceptual understanding of how these technologies work to identify innovation opportunities and how to successfully thrive in an increasingly competitive environment is needed for the entrepreneurs of tomorrow. Transforming Businesses With Bitcoin Mining and Blockchain Applications provides innovative insights into IT infrastructure and emerging trends in the realm of digital business technologies. This publication analyzes and extracts information from Bitcoin networks and provides the necessary steps to designing open blockchain. Highlighting topics that include financial markets, risk management, and smart technologies, the research contained within the title is ideal for entrepreneurs, business professionals, managers, executives, academicians, researchers, and business students.
Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.
In today's digital world, the huge amount of data being generated is unstructured, messy, and chaotic in nature. Dealing with such data, and attempting to unfold the meaningful information, can be a challenging task. Feature engineering is a process to transform such data into a suitable form that better assists with interpretation and visualization. Through this method, the transformed data is more transparent to the machine learning models, which in turn causes better prediction and analysis of results. Data science is crucial for the data scientist to assess the trade-offs of their decisions regarding the effectiveness of the machine learning model implemented. Investigating the demand in this area today and in the future is a necessity. The Handbook of Research on Automated Feature Engineering and Advanced Applications in Data Science provides an in-depth analysis on both the theoretical and the latest empirical research findings on how features can be extracted and transformed from raw data. The chapters will introduce feature engineering and the recent concepts, methods, and applications with the use of various data types, as well as examine the latest machine learning applications on the data. While highlighting topics such as detection, tracking, selection techniques, and prediction models using data science, this book is ideally intended for research scholars, big data scientists, project developers, data analysts, and computer scientists along with practitioners, researchers, academicians, and students interested in feature engineering and its impact on data.
Multimedia represents information in novel and varied formats. One of the most prevalent examples of continuous media is video. Extracting underlying data from these videos can be an arduous task. From video indexing, surveillance, and mining, complex computational applications are required to process this data. Intelligent Analysis of Multimedia Information is a pivotal reference source for the latest scholarly research on the implementation of innovative techniques to a broad spectrum of multimedia applications by presenting emerging methods in continuous media processing and manipulation. This book offers a fresh perspective for students and researchers of information technology, media professionals, and programmers.
The effective application of knowledge management principles has proven to be beneficial for modern organizations. When utilized in the academic community, these frameworks can enhance the value and quality of research initiatives. Enhancing Academic Research With Knowledge Management Principles is a pivotal reference source for the latest research on implementing theoretical frameworks of information management in the context of academia and universities. Featuring extensive coverage on relevant areas such as data mining, organizational and academic culture, this publication is an ideal resource for researchers, academics, practitioners, professionals, and students.
This book constitutes the refereed post-conference proceedings of the Fourth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2021, held in Chennai, India, in March 2021. The 20 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.
"Introduction to Data Mining" presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Data Simplification: Taming Information With Open Source Tools addresses the simple fact that modern data is too big and complex to analyze in its native form. Data simplification is the process whereby large and complex data is rendered usable. Complex data must be simplified before it can be analyzed, but the process of data simplification is anything but simple, requiring a specialized set of skills and tools. This book provides data scientists from every scientific discipline with the methods and tools to simplify their data for immediate analysis or long-term storage in a form that can be readily repurposed or integrated with other data. Drawing upon years of practical experience, and using numerous examples and use cases, Jules Berman discusses the principles, methods, and tools that must be studied and mastered to achieve data simplification, open source tools, free utilities and snippets of code that can be reused and repurposed to simplify data, natural language processing and machine translation as a tool to simplify data, and data summarization and visualization and the role they play in making data useful for the end user.
The concept of digital risk, which has become ubiquitous in the media, sustains a number of myths and beliefs about the digital world. This book explores the opposite view of these ideologies by focusing on digital risks as perceived by actors in their respective contexts. Perceptions and Analysis of Digital Risks identifies the different types of risks that concern actors and actually impact their daily lives, within education or various socio-professional environments. It provides an analysis of the strategies used by the latter to deal with these risks as they conduct their activities; thus making it possible to characterize the digital cultures and, more broadly, the informational cultures at work. This book offers many avenues for action in terms of educating the younger generations, training teachers and leaders, and mediating risks.
Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering. |
![]() ![]() You may like...
Modeling and Simulating Complex Business…
Zoumpolia Dikopoulou
Hardcover
R3,681
Discovery Miles 36 810
Social Sensing - Building Reliable…
Dong Wang, Tarek Abdelzaher, …
Paperback
Contemporary Perspectives in Data Mining
Kenneth D. Lawrence, Ronald K. Klimberg
Hardcover
R2,743
Discovery Miles 27 430
Data Science for Fake News - Surveys and…
Deepak P, Tanmoy Chakraborty, …
Hardcover
R4,481
Discovery Miles 44 810
|