![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
The domains of Pattern Recognition and Machine Learning have experienced exceptional interest and growth, however the overwhelming number of methods and applications can make the fields seem bewildering. This text offers an accessible and conceptually rich introduction, a solid mathematical development emphasizing simplicity and intuition. Students beginning to explore pattern recognition do not need a suite of mathematically advanced methods or complicated computational libraries to understand and appreciate pattern recognition; rather the fundamental concepts and insights, eminently teachable at the undergraduate level, motivate this text. This book provides methods of analysis that the reader can realistically undertake on their own, supported by real-world examples, case-studies, and worked numerical / computational studies.
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition and natural language treatment which are also substantially relevant for the industry.
Advance Praise for Indian Mujahideen: Computational Analysis and Public Policy This book presents a highly innovative computational approach to analyzing the strategic behavior of terrorist groups and formulating counter-terrorism policies. It would be very useful for international security analysts and policymakers. Uzi Arad, National Security Advisor to the Prime Minister of Israel and Head, Israel National Security Council (2009-2011) An important book on a complex security problem. Issues have been analysed in depth based on quality research. Insightful and well-balanced in describing the way forward. Naresh Chandra, Indian Ambassador to the USA (1996-2001) and Cabinet Secretary (1990-1992). An objective and clinical account of the origins, aims, extra-territorial links and modus-operandi, of a growingly dangerous terrorist organization that challenges the federal, democratic, secular and pluralistic ethos of India s polity. The authors have meticulously researched and analysed the multi-faceted challenges that the Indian Mujahideen poses and realistically dwelt on the ways in which these challenges could be faced and overcome. G. Parthasarathy, High Commissioner of India to Australia (1995-1998) and Pakistan (1998-2000). This book provides the first in-depth look at how advanced mathematics and modern computing technology can influence insights on analysis and policies directed at the Indian Mujahideen (IM) terrorist group. The book also summarizes how the IM group is committed to the destabilization of India by leveraging links with other terror groups such as Lashkar-e-Taiba, and through support from the Pakistani Government and Pakistan s intelligence service. Foreword by The Hon. Louis J. Freeh."
This book provides awareness of different evolutionary methods used for automatic generation and optimization of test data in the field of software testing. While the book highlights on the foundations of software testing techniques, it also focuses on contemporary topics for research and development. This book covers the automated process of testing in different levels like unit level, integration level, performance level, evaluation of testing strategies, testing in security level, optimizing test cases using various algorithms, and controlling and monitoring the testing process etc. This book aids young researchers in the field of optimization of automated software testing, provides academics with knowledge on the emerging field of AI in software development, and supports universities, research centers, and industries in new projects using AI in software testing. Supports the advancement in the artificial intelligence used in software development; Advances knowledge on artificial intelligence based metaheuristic approach in software testing; Encourages innovation in traditional software testing field using recent artificial intelligence. *
This book addresses and examines the impacts of applications and services for data management and analysis, such as infrastructure, platforms, software, and business processes, on both academia and industry. The chapters cover effective approaches in dealing with the inherent complexity and increasing demands of big data management from an applications perspective. Various case studies included have been reported by data analysis experts who work closely with their clients in such fields as education, banking, and telecommunications. Understanding how data management has been adapted to these applications will help students, instructors and professionals in the field. Application areas also include the fields of social network analysis, bioinformatics, and the oil and gas industries.
This book introduces the properties of conservative extensions of First Order Logic (FOL) to new Intensional First Order Logic (IFOL). This extension allows for intensional semantics to be used for concepts, thus affording new and more intelligent IT systems. Insofar as it is conservative, it preserves software applications and constitutes a fundamental advance relative to the current RDB databases, Big Data with NewSQL, Constraint databases, P2P systems, and Semantic Web applications. Moreover, the many-valued version of IFOL can support the AI applications based on many-valued logics.
Every second, users produce large amounts of image data from medical and satellite imaging systems. Image mining techniques that are capable of extracting useful information from image data are becoming increasingly useful, especially in medicine and the health sciences. Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes addresses major techniques regarding image processing as a tool for disease identification and diagnosis, as well as treatment recommendation. Highlighting current research intended to advance the medical field, this publication is essential for use by researchers, advanced-level students, academicians, medical professionals, and technology developers. An essential addition to the reference material available in the field of medicine, this timely publication covers a range of applied research on data mining, image processing, computational simulation, data visualization, and image retrieval.
This book offers researchers an understanding of the fundamental issues and a good starting point to work on this rapidly expanding field. It provides a comprehensive survey of current developments of heterogeneous information network. It also presents the newest research in applications of heterogeneous information networks to similarity search, ranking, clustering, recommendation. This information will help researchers to understand how to analyze networked data with heterogeneous information networks. Common data mining tasks are explored, including similarity search, ranking, and recommendation. The book illustrates some prototypes which analyze networked data. Professionals and academics working in data analytics, networks, machine learning, and data mining will find this content valuable. It is also suitable for advanced-level students in computer science who are interested in networking or pattern recognition.
Data Mining and Multi agent Integration aims to re?ect state of the art research and development of agent mining interaction and integration (for short, agent min ing). The book was motivated by increasing interest and work in the agents data min ing, and vice versa. The interaction and integration comes about from the intrinsic challenges faced by agent technology and data mining respectively; for instance, multi agent systems face the problem of enhancing agent learning capability, and avoiding the uncertainty of self organization and intelligence emergence. Data min ing, if integrated into agent systems, can greatly enhance the learning skills of agents, and assist agents with predication of future states, thus initiating follow up action or intervention. The data mining community is now struggling with mining distributed, interactive and heterogeneous data sources. Agents can be used to man age such data sources for data access, monitoring, integration, and pattern merging from the infrastructure, gateway, message passing and pattern delivery perspectives. These two examples illustrate the potential of agent mining in handling challenges in respective communities. There is an excellent opportunity to create innovative, dual agent mining interac tion and integration technology, tools and systems which will deliver results in one new technology.
The book presents the proceedings of two conferences: the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020), which took place in Las Vegas, NV, USA, July 27-30, 2020. The conferences are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Papers cover all aspects of Data Science, Data Mining, Machine Learning, Artificial and Computational Intelligence (ICDATA) and Information Retrieval Systems, Information & Knowledge Engineering, Management and Cyber-Learning (IKE). Authors include academics, researchers, professionals, and students. Presents the proceedings of the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020); Includes papers on topics from data mining to machine learning to informational retrieval systems; Authors include academics, researchers, professionals and students.
This book presents Proceedings of the International Conference on Intelligent Systems and Networks (ICISN 2022), held at Hanoi in Vietnam. It includes peer reviewed high quality articles on Intelligent System and Networks. It brings together professionals and researchers in the area and presents a platform for exchange of ideas and to foster future collaboration. The topics covered in this book include- Foundations of Computer Science; Computational Intelligence Language and speech processing; Software Engineering Software development methods; Wireless Communications Signal Processing for Communications; Electronics track IoT and Sensor Systems Embedded Systems; etc.
This textbook describes the hands-on application of data science techniques to solve problems in manufacturing and the Industrial Internet of Things (IIoT). Monitoring and managing operational performance is a crucial activity for industrial and business organisations. The emergence of low-cost, accessible computing and storage, through Industrial Digital Technologies (IDT) and Industry 4.0, has generated considerable interest in innovative approaches to doing more with data. Data science, predictive analytics, machine learning, artificial intelligence and general approaches to modelling, simulating and visualising industrial systems have often been considered topics only for research labs and academic departments. This textbook debunks the mystique around applied data science and shows readers, using tutorial-style explanations and real-life case studies, how practitioners can develop their own understanding of performance to achieve tangible business improvements. All exercises can be completed with commonly available tools, many of which are free to install and use. Readers will learn how to use tools to investigate, diagnose, propose and implement analytics solutions that will provide explainable results to deliver digital transformation.
This book facilitates both the theoretical background and applications of fuzzy, intuitionistic fuzzy and rough, fuzzy rough sets in the area of data science. This book provides various individual, soft computing, optimization and hybridization techniques of fuzzy and intuitionistic fuzzy sets with rough sets and their applications including data handling and that of type-2 fuzzy systems. Machine learning techniques are effectively implemented to solve a diversity of problems in pattern recognition, data mining and bioinformatics. To handle different nature of problems, including uncertainty, the book highlights the theory and recent developments on uncertainty, fuzzy systems, feature extraction, text categorization, multiscale modeling, soft computing, machine learning, deep learning, SMOTE, data handling, decision making, Diophantine fuzzy soft set, data envelopment analysis, centrally measures, social networks, Volterra–Fredholm integro-differential equation, Caputo fractional derivative, interval optimization, decision making, classification problems. This book is predominantly envisioned for researchers and students of data science, medical scientists and professional engineers.
This book presents the proceedings of the 9th Asian South Pacific Association of Sport Psychology International Congress (ASPASP) 2022, Kuching, Malaysia, which entails the different sporting innovation themes, namely, Applied Sport and Social Psychology, Health and Exercise, Motor Control and Learning, Counselling and Clinical Psychology, Biomechanics, Data Mining and Machine Learning in Sports amongst others. It presents the state-of-the-art technological advancements towards the aforesaid themes and provides a platform to shape the future direction of sport science, specifically in the field sports and exercise psychology. ​
This book provides an overview of the history of integrative bioinformatics and the actual situation and the relevant tools. Subjects cover the essential topics, basic introductions, and latest developments; biological data integration and manipulation; modeling and simulation of networks; as well as a number of applications of integrative bioinformatics. It aims to provide basic introduction of biological information systems and guidance for the computational analysis of systems biology. This book covers a range of issues and methods that unveil a multitude of omics data integration and relevance that integrative bioinformatics has today. It contains a unique compilation of invited and selected articles from the Journal of Integrative Bioinformatics (JIB) and annual meetings of the International Symposium on Integrative Bioinformatics.
Data Mining for Business Applications presents the state-of-the-art research and development outcomes on methodologies, techniques, approaches and successful applications in the area. The contributions mark a paradigm shift from data-centered pattern mining to domain driven actionable knowledge discovery for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain problems in theory and practice, and strengthen business intelligence in complex enterprise applications. The volume also explores challenges and directions for future research and development in the dialogue between academia and business."
This third edition details new and updated methods and protocols on important databases and data mining tools. Chapters guides readers through archives of macromolecular sequences and three-dimensional structures, databases of protein-protein interactions, methods for prediction conformational disorder, mutant thermodynamic stability, aggregation, and drug response. Quality of structural data and their release, soft mechanics applications in biology, and protein flexibility are considered, too, together with pan-genome analyses, rational drug combination screening and Omics Deep Mining. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials, includes step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Data Mining Techniques for the Life Sciences, Third Edition aims to be a practical guide to researches to help further their study in this field.
This book addresses the pertinent issues that will need to be considered by those interested in physical security problems of the future. Specifically, it examines how changes in the accessibility of technology - data, hardware, software - are likely to affect both threat and mitigation considerations for Chemical, Biological, Radiological and Explosive (CBRE) scenarios and how social science can inform us of the human aspects of each. The trend towards an ever more socio-technical society and infrastructures - encapsulated by concepts such as 'smart cities' - is drawn out as a key motivation for adopting more holistic risk approaches to such security problems, than is currently the case.
This important text/reference presents a comprehensive review of techniques for taxonomy matching, discussing matching algorithms, analyzing matching systems, and comparing matching evaluation approaches. Different methods are investigated in accordance with the criteria of the Ontology Alignment Evaluation Initiative (OAEI). The text also highlights promising developments and innovative guidelines, to further motivate researchers and practitioners in the field. Topics and features: discusses the fundamentals and the latest developments in taxonomy matching, including the related fields of ontology matching and schema matching; reviews next-generation matching strategies, matching algorithms, matching systems, and OAEI campaigns, as well as alternative evaluations; examines how the latest techniques make use of different sources of background knowledge to enable precise matching between repositories; describes the theoretical background, state-of-the-art research, and practical real-world applications; covers the fields of dynamic taxonomies, personalized directories, catalog segmentation, and recommender systems. This stimulating book is an essential reference for practitioners engaged in data science and business intelligence, and for researchers specializing in taxonomy matching and semantic similarity assessment. The work is also suitable as a supplementary text for advanced undergraduate and postgraduate courses on information and metadata management.
This book offers a comprehensive review of multilabel techniques widely used to classify and label texts, pictures, videos and music in the Internet. A deep review of the specialized literature on the field includes the available software needed to work with this kind of data. It provides the user with the software tools needed to deal with multilabel data, as well as step by step instruction on how to use them. The main topics covered are: * The special characteristics of multi-labeled data and the metrics available to measure them.* The importance of taking advantage of label correlations to improve the results.* The different approaches followed to face multi-label classification.* The preprocessing techniques applicable to multi-label datasets.* The available software tools to work with multi-label data. This book is beneficial for professionals and researchers in a variety of fields because of the wide range of potential applications for multilabel classification. Besides its multiple applications to classify different types of online information, it is also useful in many other areas, such as genomics and biology. No previous knowledge about the subject is required. The book introduces all the needed concepts to understand multilabel data characterization, treatment and evaluation.
This monograph discusses software reuse and how it can be applied at different stages of the software development process, on different types of data and at different levels of granularity. Several challenging hypotheses are analyzed and confronted using novel data-driven methodologies, in order to solve problems in requirements elicitation and specification extraction, software design and implementation, as well as software quality assurance. The book is accompanied by a number of tools, libraries and working prototypes in order to practically illustrate how the phases of the software engineering life cycle can benefit from unlocking the potential of data. Software engineering researchers, experts, and practitioners can benefit from the various methodologies presented and can better understand how knowledge extracted from software data residing in various repositories can be combined and used to enable effective decision making and save considerable time and effort through software reuse. Mining Software Engineering Data for Software Reuse can also prove handy for graduate-level students in software engineering.
This book is a comprehensive, hands-on guide to the basics of data mining and machine learning with a special emphasis on supervised and unsupervised learning methods. The book lays stress on the new ways of thinking needed to master in machine learning based on the Python, R, and Java programming platforms. This book first provides an understanding of data mining, machine learning and their applications, giving special attention to classification and clustering techniques. The authors offer a discussion on data mining and machine learning techniques with case studies and examples. The book also describes the hands-on coding examples of some well-known supervised and unsupervised learning techniques using three different and popular coding platforms: R, Python, and Java. This book explains some of the most popular classification techniques (K-NN, Naive Bayes, Decision tree, Random forest, Support vector machine etc,) along with the basic description of artificial neural network and deep neural network. The book is useful for professionals, students studying data mining and machine learning, and researchers in supervised and unsupervised learning techniques. |
![]() ![]() You may like...
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
The Data and Analytics Playbook - Proven…
Lowell Fryman, Gregory Lampshire, …
Paperback
R1,272
Discovery Miles 12 720
Mathematical Foundations of Data Science…
Frank Emmert-Streib, Salissou Moutari, …
Hardcover
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R10,065
Discovery Miles 100 650
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R7,211
Discovery Miles 72 110
|