0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (77)
  • R500+ (3,409)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Databases > Data mining

Security and Policy Driven Computing (Hardcover, New): Lei Liu Security and Policy Driven Computing (Hardcover, New)
Lei Liu
R4,930 Discovery Miles 49 300 Ships in 10 - 15 working days

Security and Policy Driven Computing covers recent advances in security, storage, parallelization, and computing as well as applications. The author incorporates a wealth of analysis, including studies on intrusion detection and key management, computer storage policy, and transactional management. The book first describes multiple variables and index structure derivation for high dimensional data distribution and applies numeric methods to proposed search methods. It also focuses on discovering relations, logic, and knowledge for policy management. To manage performance, the text discusses contention management for transactional structures, buffer tuning, and test environments. It then illustrates search optimization using truncated functions with paralleled techniques. The final chapters present structures, recovery, message conflicts, and test coverage of quantum policies and explain methods of quantum protection for intrusion prevention. An overview of security and policy applications for systems and computing, this book explores the latest R&D, emerging technology, and state-of-the-art technical studies of security and policy issues. It also looks to future research and technologies that will propel the innovation of next-generation systems.

Privacy-Aware Knowledge Discovery - Novel Applications and New Techniques (Hardcover, New): Francesco Bonchi, Elena Ferrari Privacy-Aware Knowledge Discovery - Novel Applications and New Techniques (Hardcover, New)
Francesco Bonchi, Elena Ferrari
R3,552 Discovery Miles 35 520 Ships in 10 - 15 working days

Covering research at the frontier of this field, Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques presents state-of-the-art privacy-preserving data mining techniques for application domains, such as medicine and social networks, that face the increasing heterogeneity and complexity of new forms of data. Renowned authorities from prominent organizations not only cover well-established results -- they also explore complex domains where privacy issues are generally clear and well defined, but the solutions are still preliminary and in continuous development. Divided into seven parts, the book provides in-depth coverage of the most novel reference scenarios for privacy-preserving techniques. The first part gives general techniques that can be applied to various applications discussed in the rest of the book. The second section focuses on the sanitization of network traces and privacy in data stream mining. After the third part on privacy in spatio-temporal data mining and mobility data analysis, the book examines time series analysis in the fourth section, explaining how a perturbation method and a segment-based method can tackle privacy issues of time series data. The fifth section on biomedical data addresses genomic data as well as the problem of privacy-aware information sharing of health data. In the sixth section on web applications, the book deals with query log mining and web recommender systems. The final part on social networks analyzes privacy issues related to the management of social network data under different perspectives. While several new results have recently occurred in the privacy, database, and data mining research communities, a uniform presentation of up-to-date techniques and applications is lacking. Filling this void, Privacy-Aware Knowledge Discovery presents novel algorithms, patterns, and models, along with a significant collection of open problems for future investigation.

Realtime Data Mining - Self-Learning Techniques for Recommendation Engines (Hardcover, 1st ed. 2013, Corr. 2nd printing 2014):... Realtime Data Mining - Self-Learning Techniques for Recommendation Engines (Hardcover, 1st ed. 2013, Corr. 2nd printing 2014)
Alexander Paprotny, Michael Thess
R3,445 Discovery Miles 34 450 Ships in 10 - 15 working days

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Variants of Evolutionary Algorithms for Real-World Applications (Hardcover, 2012): Raymond Chiong, Thomas Weise, Zbigniew... Variants of Evolutionary Algorithms for Real-World Applications (Hardcover, 2012)
Raymond Chiong, Thomas Weise, Zbigniew Michalewicz
R2,746 Discovery Miles 27 460 Ships in 18 - 22 working days

Evolutionary Algorithms (EAs) are population-based, stochastic search algorithms that mimic natural evolution. Due to their ability to find excellent solutions for conventionally hard and dynamic problems within acceptable time, EAs have attracted interest from many researchers and practitioners in recent years. This book "Variants of Evolutionary Algorithms for Real-World Applications" aims to promote the practitioner's view on EAs by providing a comprehensive discussion of how EAs can be adapted to the requirements of various applications in the real-world domains. It comprises 14 chapters, including an introductory chapter re-visiting the fundamental question of what an EA is and other chapters addressing a range of real-world problems such as production process planning, inventory system and supply chain network optimisation, task-based jobs assignment, planning for CNC-based work piece construction, mechanical/ship design tasks that involve runtime-intense simulations, data mining for the prediction of soil properties, automated tissue classification for MRI images, and database query optimisation, among others. These chapters demonstrate how different types of problems can be successfully solved using variants of EAs and how the solution approaches are constructed, in a way that can be understood and reproduced with little prior knowledge on optimisation.

Introduction to Privacy-Preserving Data Publishing - Concepts and Techniques (Hardcover, New): Benjamin C M Fung, Ke Wang, Ada... Introduction to Privacy-Preserving Data Publishing - Concepts and Techniques (Hardcover, New)
Benjamin C M Fung, Ke Wang, Ada Wai-Chee Fu, Philip S. Yu
R4,235 Discovery Miles 42 350 Ships in 10 - 15 working days

Gaining access to high-quality data is a vital necessity in knowledge-based decision making. But data in its raw form often contains sensitive information about individuals. Providing solutions to this problem, the methods and tools of privacy-preserving data publishing enable the publication of useful information while protecting data privacy. Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques presents state-of-the-art information sharing and data integration methods that take into account privacy and data mining requirements.

The first part of the book discusses the fundamentals of the field. In the second part, the authors present anonymization methods for preserving information utility for specific data mining tasks. The third part examines the privacy issues, privacy models, and anonymization methods for realistic and challenging data publishing scenarios. While the first three parts focus on anonymizing relational data, the last part studies the privacy threats, privacy models, and anonymization methods for complex data, including transaction, trajectory, social network, and textual data.

This book not only explores privacy and information utility issues but also efficiency and scalability challenges. In many chapters, the authors highlight efficient and scalable methods and provide an analytical discussion to compare the strengths and weaknesses of different solutions.

Intelligence Science II - Third IFIP TC 12 International Conference, ICIS 2018, Beijing, China, November 2-5, 2018, Proceedings... Intelligence Science II - Third IFIP TC 12 International Conference, ICIS 2018, Beijing, China, November 2-5, 2018, Proceedings (Hardcover, 1st ed. 2018)
Zhongzhi Shi, Cyriel Pennartz, Tiejun Huang
R1,496 Discovery Miles 14 960 Ships in 18 - 22 working days

This book constitutes the refereed proceedings of the Third International Conference on Intelligence Science, ICIS 2018, held in Beijing China, in November 2018. The 44 full papers and 5 short papers presented were carefully reviewed and selected from 85 submissions. They deal with key issues in intelligence science and have been organized in the following topical sections: brain cognition; machine learning; data intelligence; language cognition; perceptual intelligence; intelligent robots; fault diagnosis; and ethics of artificial intelligence.

Numerical Nonsmooth Optimization - State of the Art Algorithms (Hardcover, 1st ed. 2020): Adil M. Bagirov, Manlio Gaudioso,... Numerical Nonsmooth Optimization - State of the Art Algorithms (Hardcover, 1st ed. 2020)
Adil M. Bagirov, Manlio Gaudioso, Napsu Karmitsa, Marko M. Makela, Sona Taheri
R4,831 Discovery Miles 48 310 Ships in 18 - 22 working days

Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.

Advances in Big Data Analytics - Theory, Algorithms and Practices (Hardcover, 1st ed. 2022): Yong Shi Advances in Big Data Analytics - Theory, Algorithms and Practices (Hardcover, 1st ed. 2022)
Yong Shi
R4,689 Discovery Miles 46 890 Ships in 10 - 15 working days

Today, big data affects countless aspects of our daily lives. This book provides a comprehensive and cutting-edge study on big data analytics, based on the research findings and applications developed by the author and his colleagues in related areas. It addresses the concepts of big data analytics and/or data science, multi-criteria optimization for learning, expert and rule-based data analysis, support vector machines for classification, feature selection, data stream analysis, learning analysis, sentiment analysis, link analysis, and evaluation analysis. The book also explores lessons learned in applying big data to business, engineering and healthcare. Lastly, it addresses the advanced topic of intelligence-quotient (IQ) tests for artificial intelligence. Since each aspect mentioned above concerns a specific domain of application, taken together, the algorithms, procedures, analysis and empirical studies presented here offer a general picture of big data developments. Accordingly, the book can not only serve as a textbook for graduates with a fundamental grasp of training in big data analytics, but can also show practitioners how to use the proposed techniques to deal with real-world big data problems.

Text Mining - Classification, Clustering, and Applications (Hardcover): Ashok N. Srivastava, Mehran Sahami Text Mining - Classification, Clustering, and Applications (Hardcover)
Ashok N. Srivastava, Mehran Sahami
R3,088 Discovery Miles 30 880 Ships in 10 - 15 working days

The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the Field

Giving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify text documents and applies these methods in a variety of areas, including adaptive information filtering, information distillation, and text search.

The book begins with chapters on the classification of documents into predefined categories. It presents state-of-the-art algorithms and their use in practice. The next chapters describe novel methods for clustering documents into groups that are not predefined. These methods seek to automatically determine topical structures that may exist in a document corpus. The book concludes by discussing various text mining applications that have significant implications for future research and industrial use.

There is no doubt that text mining will continue to play a critical role in the development of future information systems and advances in research will be instrumental to their success. This book captures the technical depth and immense practical potential of text mining, guiding readers to a sound appreciation of this burgeoning field.

Geographic Data Mining and Knowledge Discovery (Hardcover, 2nd edition): Harvey J. Miller, Jiawei Han Geographic Data Mining and Knowledge Discovery (Hardcover, 2nd edition)
Harvey J. Miller, Jiawei Han
R4,250 Discovery Miles 42 500 Ships in 10 - 15 working days

The Definitive Volume on Cutting-Edge Exploratory Analysis of Massive Spatial and Spatiotemporal Databases

Since the publication of the first edition of Geographic Data Mining and Knowledge Discovery, new techniques for geographic data warehousing (GDW), spatial data mining, and geovisualization (GVis) have been developed. In addition, there has been a rise in the use of knowledge discovery techniques due to the increasing collection and storage of data on spatiotemporal processes and mobile objects. Incorporating these novel developments, this second edition reflects the current state of the art in the field.

New to the Second Edition

  • Updated material on geographic knowledge discovery (GKD), GDW research, map cubes, spatial dependency, spatial clustering methods, clustering techniques for trajectory data, the INGENS 2.0 software, and GVis techniques
  • New chapter on data quality issues in GKD
  • New chapter that presents a tree-based partition querying methodology for medoid computation in large spatial databases
  • New chapter that discusses the use of geographically weighted regression as an exploratory technique
  • New chapter that gives an integrated approach to multivariate analysis and geovisualization
  • Five new chapters on knowledge discovery from spatiotemporal and mobile objects databases

Geographic data mining and knowledge discovery is a promising young discipline with many challenging research problems. This book shows that this area represents an important direction in the development of a new generation of spatial analysis tools for data-rich environments. Exploring various problems and possible solutions, it will motivate researchers to develop new methods and applications in this emerging field.

The Top Ten Algorithms in Data Mining (Hardcover): Xindong Wu, Vipin Kumar The Top Ten Algorithms in Data Mining (Hardcover)
Xindong Wu, Vipin Kumar
R3,107 Discovery Miles 31 070 Ships in 10 - 15 working days

Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm.

The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics?including classification, clustering, statistical learning, association analysis, and link mining?in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses.

By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.

Quality Aspects in Spatial Data Mining (Hardcover): Alfred Stein, Wenzhong Shi, Wietske Bijker Quality Aspects in Spatial Data Mining (Hardcover)
Alfred Stein, Wenzhong Shi, Wietske Bijker
R4,928 Discovery Miles 49 280 Ships in 10 - 15 working days

Describes the State-of-the-Art in Spatial Data Mining, Focuses on Data Quality

Substantial progress has been made toward developing effective techniques for spatial information processing in recent years. This science deals with models of reality in a GIS, however, and not with reality itself. Therefore, spatial information processes are often imprecise, allowing for much interpretation of abstract figures and data. Quality Aspects in Spatial Data Mining introduces practical and theoretical solutions for making sense of the often chaotic and overwhelming amount of concrete data available to researchers.

In this cohesive collection of peer-reviewed chapters, field authorities present the latest field advancements and cover such essential areas as data acquisition, geoinformation theory, spatial statistics, and dissemination. Each chapter debuts with an editorial preview of each topic from a conceptual, applied, and methodological point of view, making it easier for researchers to judge which information is most beneficial to their work.

Chapters Evolve From Error Propagation and Spatial Statistics to Address Relevant Applications

The book advises the use of granular computing as a means of circumventing spatial complexities. This counter-application to traditional computing allows for the calculation of imprecise probabilities - the kind of information that the spatial information systems community wrestles with much of the time.

Under the editorial guidance of internationally respected geoinformatics experts, this indispensable volume addresses quality aspects in the entire spatial data mining process, from data acquisition to end user. It also alleviates what is oftenfield researchers' most daunting task by organizing the wealth of concrete spatial data available into one convenient source, thereby advancing the frontiers of spatial information systems.

Complex Data Modeling and Computationally Intensive Statistical Methods (Hardcover, 2010 ed.): Pietro Mantovan, Piercesare... Complex Data Modeling and Computationally Intensive Statistical Methods (Hardcover, 2010 ed.)
Pietro Mantovan, Piercesare Secchi
R1,408 Discovery Miles 14 080 Ships in 18 - 22 working days

Recentyearshaveseentheadventanddevelopmentofmanydevicesabletorecordand storeaneverincreasingamountofinformation. Thefastprogressofthesetechnologies is ubiquitousthroughoutall ?elds of science and applied contexts, ranging from medicine,biologyandlifesciences,toeconomicsandindustry. Thedataprovided bytheseinstrumentshavedifferentforms:2D-3Dimagesgeneratedbydiagnostic medicalscanners,computervisionorsatelliteremotesensing,microarraydataand genesets,integratedclinicalandadministrativedatafrompublichealthdatabases, realtimemonitoringdataofabio-marker,systemcontroldatasets. Allthesedata sharethecommoncharacteristicofbeingcomplexandoftenhighlydimensional. Theanalysisofcomplexandhighlydimensionaldataposesnewchallengesto thestatisticianandrequiresthedevelopmentofnovelmodelsandtechniques,fueling manyfascinatingandfastgrowingresearchareasofmodernstatistics. Anincomplete listincludes for example: functionaldata analysis, that deals with data having a functionalnature,suchascurvesandsurfaces;shapeanalysisofgeometricforms,that relatestoshapematchingandshaperecognition,appliedtocomputationalvisionand medicalimaging;datamining,thatstudiesalgorithmsfortheautomaticextraction ofinformationfromdata,elicitingrulesandpatternsoutofmassivedatasets;risk analysis,fortheevaluationofhealth,environmental,andengineeringrisks;graphical models,thatallowproblemsinvolvinglarge-scalemodelswithmillionsofrandom variableslinkedincomplexwaystobeapproached;reliabilityofcomplexsystems, whoseevaluationrequirestheuseofmanystatisticalandprobabilistictools;optimal designofcomputersimulationstoreplaceexpensiveandtimeconsumingphysical experiments. Thecontributionspublishedinthisvolumearetheresultofaselectionbasedonthe presentations(aboutonehundred)givenattheconference"S. Co. 2009:Complexdata modelingandcomputationallyintensivemethodsforestimationandprediction",held ? atthePolitecnicodiMilano. S. Co. isaforumforthediscussionofnewdevelopments ? September14-16,2009. Thatof2009isitssixthedition,the?rstonebeingheldinVenice in1999. VI Preface andapplicationsofstatisticalmethodsandcomputationaltechniquesforcomplexand highlydimensionaldatasets. Thebookisaddressedtostatisticiansworkingattheforefrontofthestatistical analysisofcomplexandhighlydimensionaldataandoffersawidevarietyofstatistical models,computerintensivemethodsandapplications. Wewishtothankallassociateeditorsandrefereesfortheirvaluablecontributions thatmadethisvolumepossible. MilanandVenice,May2010 PietroMantovan PiercesareSecchi Contents Space-timetextureanalysisinthermalinfraredimagingforclassi?cation ofRaynaud'sPhenomenon GrazianoAretusi,LaraFontanella,LuigiIppolitiandArcangeloMerla...1 Mixed-effectsmodellingofKevlar?brefailuretimesthroughBayesian non-parametrics RaffaeleArgiento,AlessandraGuglielmiandAntonioPievatolo...13 Space?llingandlocallyoptimaldesignsforGaussianUniversalKriging AlessandroBaldiAntogniniandMaroussaZagoraiou...27 Exploitation,integrationandstatisticalanalysisofthePublicHealth DatabaseandSTEMIArchiveintheLombardiaregion PietroBarbieri,Niccolo'Grieco,FrancescaIeva,AnnaMariaPaganoniand PiercesareSecchi...41 Bootstrapalgorithmsforvarianceestimationin PSsampling AlessandroBarbieroandFulviaMecatti...5 7 FastBayesianfunctionaldataanalysisofbasalbodytemperature JamesM. Ciera...71 AparametricMarkovchaintomodelage-andstate-dependentwear processes MassimilianoGiorgio,MaurizioGuidaandGianpaoloPulcini...85 CasestudiesinBayesiancomputationusingINLA SaraMartinoandHav ? ardRue...99 Agraphicalmodelsapproachforcomparinggenesets M. So?aMassa,MonicaChiognaandChiaraRomualdi...115 VIII Contents Predictivedensitiesandpredictionlimitsbasedonpredictivelikelihoods PaoloVidoni...123 Computer-intensiveconditionalinference G. AlastairYoungandThomasJ. DiCiccio...137 MonteCarlosimulationmethodsforreliabilityestimationandfailure prognostics EnricoZio...151 ListofContributors AlessandroBaldiAntognini JamesM. Ciera DepartmentofStatisticalSciences DepartmentofStatisticalSciences UniversityofBologna UniversityofPadova Bologna,Italy Padova,Italy ThomasJ. DiCiccio GrazianoAretusi DepartmentofSocialStatistics DepartmentofQuantitativeMethods CornellUniversity andEconomicTheory Ithaca,USA UniversityG. d'Annunzio Chieti-Pescara,Italy LaraFontanella DepartmentofQuantitativeMethods RaffaeleArgiento andEconomicTheory CNRIMATI UniversityG. d'Annunzio Milan,Italy Chieti-Pescara,Italy MassimilianoGiorgio PietroBarbieri DepartmentofAerospace Uf? cioQualita' andMechanicalEngineering CernuscosulNaviglio,Italy SecondUniversityofNaples Aversa(CE),Italy AlessandroBarbiero DepartmentofEconomics Niccolo'Grieco BusinessandStatistics A. O. NiguardaCa'Granda UniversityofMilan Milan,Italy Milan,Italy MaurizioGuida MonicaChiogna DepartmentofElectrical DepartmentofStatisticalSciences andInformationEngineering UniversityofPadova UniversityofSalerno Padova,Italy Fisciano(SA),Italy X ListofContributors AlessandraGuglielmi AntonioPievatolo DepartmentofMathematics CNRIMATI PolitecnicodiMilano Milan,Italy Milan,Italy GianpaoloPulcini alsoaf?liatedtoCNRIMATI,Milano IstitutoMotori NationalResearchCouncil(CNR) FrancescaIeva Naples,Italy MOX-DepartmentofMathematics PolitecnicodiMilano ChiaraRomualdi Milan,Italy DepartmentofBiology UniversityofPadova LuigiIppoliti Padova,Italy DepartmentofQuantitativeMethods andEconomicTheory H?avardRue UniversityG. d'Annunzio DepartmentofMathematicalSciences Chieti-Pescara,Italy NorwegianUniversityforScience andTechnology SaraMartino Trondheim,Norway DepartmentofMathematicalSciences NorwegianUniversityforScience PiercesareSecchi andTechnology MOX-DepartmentofMathematics Trondheim,Norway PolitecnicodiMilano Milan,Italy M. So?aMassa DepartmentofStatisticalSciences PaoloVidoni UniversityofPadova DepartmentofStatistics Padova,Italy UniversityofUdine Udine,Italy FulviaMecatti DepartmentofStatistics G.

Geometric Theory of Information (Hardcover, 2014 ed.): Frank Nielsen Geometric Theory of Information (Hardcover, 2014 ed.)
Frank Nielsen
R4,585 R3,514 Discovery Miles 35 140 Save R1,071 (23%) Ships in 10 - 15 working days

This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition and natural language treatment which are also substantially relevant for the industry.

Applying Language Technology in Humanities Research - Design, Application, and the Underlying Logic (Hardcover, 1st ed. 2020):... Applying Language Technology in Humanities Research - Design, Application, and the Underlying Logic (Hardcover, 1st ed. 2020)
Barbara McGillivray, Gabor Mihaly Toth
R1,747 Discovery Miles 17 470 Ships in 18 - 22 working days

This book presents established and state-of-the-art methods in Language Technology (including text mining, corpus linguistics, computational linguistics, and natural language processing), and demonstrates how they can be applied by humanities scholars working with textual data. The landscape of humanities research has recently changed thanks to the proliferation of big data and large textual collections such as Google Books, Early English Books Online, and Project Gutenberg. These resources have yet to be fully explored by new generations of scholars, and the authors argue that Language Technology has a key role to play in the exploration of large-scale textual data. The authors use a series of illustrative examples from various humanistic disciplines (mainly but not exclusively from History, Classics, and Literary Studies) to demonstrate basic and more complex use-case scenarios. This book will be useful to graduate students and researchers in humanistic disciplines working with textual data, including History, Modern Languages, Literary studies, Classics, and Linguistics. This is also a very useful book for anyone teaching or learning Digital Humanities and interested in the basic concepts from computational linguistics, corpus linguistics, and natural language processing.

Big Data Analytics with Applications in Insider Threat Detection (Paperback): Bhavani Thuraisingham, Pallabi Parveen, Mohammad... Big Data Analytics with Applications in Insider Threat Detection (Paperback)
Bhavani Thuraisingham, Pallabi Parveen, Mohammad Mehedy Masud, Latifur Khan
R1,514 Discovery Miles 15 140 Ships in 10 - 15 working days

Today's malware mutates randomly to avoid detection, but reactively adaptive malware is more intelligent, learning and adapting to new computer defenses on the fly. Using the same algorithms that antivirus software uses to detect viruses, reactively adaptive malware deploys those algorithms to outwit antivirus defenses and to go undetected. This book provides details of the tools, the types of malware the tools will detect, implementation of the tools in a cloud computing framework and the applications for insider threat detection.

Extremal Optimization - Fundamentals, Algorithms, and Applications (Paperback): Yongzai L u, Yu-Wang Chen, Min-Rong Chen, Peng... Extremal Optimization - Fundamentals, Algorithms, and Applications (Paperback)
Yongzai L u, Yu-Wang Chen, Min-Rong Chen, Peng Chen, Guo-Qiang Zeng
R1,483 Discovery Miles 14 830 Ships in 10 - 15 working days

Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors' recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors' recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.

Introduction to Bio-Ontologies (Paperback): Peter N Robinson, Sebastian Bauer Introduction to Bio-Ontologies (Paperback)
Peter N Robinson, Sebastian Bauer
R1,505 Discovery Miles 15 050 Ships in 10 - 15 working days

Introduction to Bio-Ontologies explores the computational background of ontologies. Emphasizing computational and algorithmic issues surrounding bio-ontologies, this self-contained text helps readers understand ontological algorithms and their applications. The first part of the book defines ontology and bio-ontologies. It also explains the importance of mathematical logic for understanding concepts of inference in bio-ontologies, discusses the probability and statistics topics necessary for understanding ontology algorithms, and describes ontology languages, including OBO (the preeminent language for bio-ontologies), RDF, RDFS, and OWL. The second part covers significant bio-ontologies and their applications. The book presents the Gene Ontology; upper-level ontologies, such as the Basic Formal Ontology and the Relation Ontology; and current bio-ontologies, including several anatomy ontologies, Chemical Entities of Biological Interest, Sequence Ontology, Mammalian Phenotype Ontology, and Human Phenotype Ontology. The third part of the text introduces the major graph-based algorithms for bio-ontologies. The authors discuss how these algorithms are used in overrepresentation analysis, model-based procedures, semantic similarity analysis, and Bayesian networks for molecular biology and biomedical applications. With a focus on computational reasoning topics, the final part describes the ontology languages of the Semantic Web and their applications for inference. It covers the formal semantics of RDF and RDFS, OWL inference rules, a key inference algorithm, the SPARQL query language, and the state of the art for querying OWL ontologies. Web ResourceSoftware and data designed to complement material in the text are available on the book's website: http://bio-ontologies-book.org The site provides the R Robo package developed for the book, along with a compressed archive of data and ontology files used in some of the exercises. It also offers teaching/presentation slides and links to other relevant websites. This book provides readers with the foundation to use ontologies as a starting point for new bioinformatics research projects or to support current molecular genetics research projects. By supplying a self-contained introduction to OBO ontologies and the Semantic Web, it bridges the gap between both fields and helps readers see what each can contribute to the analysis and understanding of biomedical data.

Foundations of Rule Learning (Hardcover, 2010): Johannes Furnkranz, Dragan Gamberger, Nada Lavrac Foundations of Rule Learning (Hardcover, 2010)
Johannes Furnkranz, Dragan Gamberger, Nada Lavrac
R2,130 Discovery Miles 21 300 Ships in 18 - 22 working days

Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.

The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.

Large-Scale Machine Learning in the Earth Sciences (Paperback): Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser Large-Scale Machine Learning in the Earth Sciences (Paperback)
Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser
R1,472 Discovery Miles 14 720 Ships in 10 - 15 working days

From the Foreword: "While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences." --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.

Data Science for Healthcare - Methodologies and Applications (Hardcover, 1st ed. 2019): Sergio Consoli, Diego Reforgiato... Data Science for Healthcare - Methodologies and Applications (Hardcover, 1st ed. 2019)
Sergio Consoli, Diego Reforgiato Recupero, Milan Petkovic
R4,004 Discovery Miles 40 040 Ships in 10 - 15 working days

This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.

Advances in Data Science and Information Engineering - Proceedings from ICDATA 2020 and IKE 2020 (Hardcover, 1st ed. 2021):... Advances in Data Science and Information Engineering - Proceedings from ICDATA 2020 and IKE 2020 (Hardcover, 1st ed. 2021)
Robert Stahlbock, Gary M. Weiss, Mahmoud Abou-Nasr, Cheng-Ying Yang, Hamid R Arabnia, …
R4,912 Discovery Miles 49 120 Ships in 18 - 22 working days

The book presents the proceedings of two conferences: the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020), which took place in Las Vegas, NV, USA, July 27-30, 2020. The conferences are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Papers cover all aspects of Data Science, Data Mining, Machine Learning, Artificial and Computational Intelligence (ICDATA) and Information Retrieval Systems, Information & Knowledge Engineering, Management and Cyber-Learning (IKE). Authors include academics, researchers, professionals, and students. Presents the proceedings of the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020); Includes papers on topics from data mining to machine learning to informational retrieval systems; Authors include academics, researchers, professionals and students.

Pandas Basics (Paperback): Oswald Campesato Pandas Basics (Paperback)
Oswald Campesato
R1,075 R904 Discovery Miles 9 040 Save R171 (16%) Ships in 18 - 22 working days

This book is intended for those who plan to become data scientists as well as anyone who needs to perform data cleaning tasks using Pandas and NumPy. It contains a variety of code samples and features of NumPy and Pandas, and how to write regular expressions. Chapter 3 includes fundamental statistical concepts and Chapter 7 covers data visualization with Matplotlib and Seaborn. Companion files with code are available for downloading from the publisher.

Introduction to Environmental Data Science (Hardcover): William W. Hsieh Introduction to Environmental Data Science (Hardcover)
William W. Hsieh
R1,845 Discovery Miles 18 450 Ships in 9 - 17 working days

Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography, pattern recognition for satellite images from remote sensing, management of agriculture and forests, assessment of climate change, and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics are covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms, and deep learning, as well as the recent merging of machine learning and physics. End-of-chapter exercises allow readers to develop their problem-solving skills and online data sets allow readers to practise analysis of real data.

Multimedia Data Mining - A Systematic Introduction to Concepts and Theory (Paperback): Zhongfei Zhang, Ruofei Zhang Multimedia Data Mining - A Systematic Introduction to Concepts and Theory (Paperback)
Zhongfei Zhang, Ruofei Zhang
R1,986 Discovery Miles 19 860 Ships in 10 - 15 working days

Collecting the latest developments in the field, Multimedia Data Mining: A Systematic Introduction to Concepts and Theory defines multimedia data mining, its theory, and its applications. Two of the most active researchers in multimedia data mining explore how this young area has rapidly developed in recent years. The book first discusses the theoretical foundations of multimedia data mining, presenting commonly used feature representation, knowledge representation, statistical learning, and soft computing techniques. It then provides application examples that showcase the great potential of multimedia data mining technologies. In this part, the authors show how to develop a semantic repository training method and a concept discovery method in an imagery database. They demonstrate how knowledge discovery helps achieve the goal of imagery annotation. The authors also describe an effective solution to large-scale video search, along with an application of audio data classification and categorization. This novel, self-contained book examines how the merging of multimedia and data mining research can promote the understanding and advance the development of knowledge discovery in multimedia data.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Measures of Noncompactness in Metric…
J. M Ayerbe Toledano, Etc, … Hardcover R2,395 Discovery Miles 23 950
Safari Story Wooden Jigsaw Puzzle (Age…
R250 R228 Discovery Miles 2 280
Unbiased Estimators and Their…
V.G. Voinov, M.S. Nikulin Hardcover R2,942 Discovery Miles 29 420
Corporate Cybersecurity - Identifying…
J. Jackson Hardcover R2,573 Discovery Miles 25 730
Tamiya XF-27 Enamel Paint (Black Green)
R49 R33 Discovery Miles 330
Fundamentals of Convex Analysis…
M. J. Panik Hardcover R2,822 Discovery Miles 28 220
Factor Analysis in Chemistry 3e
ER Malinowski Hardcover R4,986 Discovery Miles 49 860
Mega Construx Pokémon Build with Motion…
R629 R556 Discovery Miles 5 560
TookyToy Wooden Train Set - Fire Rescue…
R1,319 Discovery Miles 13 190
Brio Viaduct Bridge
R507 Discovery Miles 5 070

 

Partners