0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (3)
  • R250 - R500 (80)
  • R500+ (3,471)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Databases > Data mining

Data Mining - Theories, Algorithms, and Examples (Hardcover, New): Nong Ye Data Mining - Theories, Algorithms, and Examples (Hardcover, New)
Nong Ye
R4,497 Discovery Miles 44 970 Ships in 12 - 19 working days

New technologies have enabled us to collect massive amounts of data in many fields. However, our pace of discovering useful information and knowledge from these data falls far behind our pace of collecting the data. Data Mining: Theories, Algorithms, and Examples introduces and explains a comprehensive set of data mining algorithms from various data mining fields. The book reviews theoretical rationales and procedural details of data mining algorithms, including those commonly found in the literature and those presenting considerable difficulty, using small data examples to explain and walk through the algorithms. The book covers a wide range of data mining algorithms, including those commonly found in data mining literature and those not fully covered in most of existing literature due to their considerable difficulty. The book presents a list of software packages that support the data mining algorithms, applications of the data mining algorithms with references, and exercises, along with the solutions manual and PowerPoint slides of lectures. The author takes a practical approach to data mining algorithms so that the data patterns produced can be fully interpreted. This approach enables students to understand theoretical and operational aspects of data mining algorithms and to manually execute the algorithms for a thorough understanding of the data patterns produced by them.

Computational Intelligent Data Analysis for Sustainable Development (Hardcover, New): Ting Yu, Nitesh Chawla, Simeon Simoff Computational Intelligent Data Analysis for Sustainable Development (Hardcover, New)
Ting Yu, Nitesh Chawla, Simeon Simoff
R4,959 Discovery Miles 49 590 Ships in 12 - 19 working days

Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.

A Primer on Business Analytics - Perspectives from the Financial Services Industry (Hardcover): Yudhvir Seetharam A Primer on Business Analytics - Perspectives from the Financial Services Industry (Hardcover)
Yudhvir Seetharam
R2,740 Discovery Miles 27 400 Ships in 10 - 15 working days

This book will provide a comprehensive overview of business analytics, for those who have either a technical background (quantitative methods) or a practitioner business background. Business analytics, in the context of the 4th Industrial Revolution, is the "new normal" for businesses that operate in this digital age. This book provides a comprehensive primer and overview of the field (and related fields such as Business Intelligence and Data Science). It will discuss the field as it applies to financial institutions, with some minor departures to other industries. Readers will gain understanding and insight into the field of data science, including traditional as well as emerging techniques. Further, many chapters are dedicated to the establishment of a data-driven team - from executive buy-in and corporate governance to managing and quantifying the return of data-driven projects.

Understanding Artificial Intelligence - Fundamentals, Use Cases and Methods for a Corporate AI Journey (Hardcover, 1st ed.... Understanding Artificial Intelligence - Fundamentals, Use Cases and Methods for a Corporate AI Journey (Hardcover, 1st ed. 2020)
Ralf T Kreutzer, Marie Sirrenberg
R2,362 Discovery Miles 23 620 Ships in 12 - 19 working days

Artificial Intelligence (AI) will change the lives of people and businesses more fundamentally than many people can even imagine today. This book illustrates the importance of AI in an era of digitalization. It introduces the foundations of AI and explains its benefits and challenges for companies and entire industries. In this regard, AI is approached not just as yet another technology, but as a fundamental innovation, which will spread into all areas of the economy and life, and will disrupt business processes and business models in the years to come. In turn, the book assesses the potential that AI holds, and clarifies the framework that is necessary for pursuing a responsible approach to AI. In a series of best-practice cases, the book subsequently highlights a broad range of sectors and industries, from production to services; from customer service to marketing and sales; and in industries like retail, health care, energy, transportation and many more. In closing, a dedicated chapter outlines a roadmap for a specific corporate AI journey. No one can ignore intensive work with AI today - neither as a private person, let alone as a top performer in companies. This book offers a thorough, carefully crafted, and easy to understand entry into the field of AI. The central terms used in the AI context are given a very good explanation. In addition, a number of cases show what AI can do today and where the journey is heading. An important book that you should not miss! Professor Dr. Harley Krohmer University of Bern "Inspiring, thought provoking and comprehensive, this book is wittingly designed to be a catalyst for your individual and corporate AI journey." Avo Schoenbohm, Professor at the Berlin School of Economics and Law, Enterprise Game Designer at LUDEO and Business Punk

Data Analytics for Internal Auditors (Paperback): Richard E. Cascarino Data Analytics for Internal Auditors (Paperback)
Richard E. Cascarino
R1,515 Discovery Miles 15 150 Ships in 9 - 17 working days

There are many webinars and training courses on Data Analytics for Internal Auditors, but no handbook written from the practitioner's viewpoint covering not only the need and the theory, but a practical hands-on approach to conducting Data Analytics. The spread of IT systems makes it necessary that auditors as well as management have the ability to examine high volumes of data and transactions to determine patterns and trends. The increasing need to continuously monitor and audit IT systems has created an imperative for the effective use of appropriate data mining tools. This book takes an auditor from a zero base to an ability to professionally analyze corporate data seeking anomalies.

The Science of Science (Paperback): Dashun Wang, Albert-Laszlo Barabasi The Science of Science (Paperback)
Dashun Wang, Albert-Laszlo Barabasi
R879 Discovery Miles 8 790 Ships in 12 - 19 working days

This is the first comprehensive overview of the 'science of science,' an emerging interdisciplinary field that relies on big data to unveil the reproducible patterns that govern individual scientific careers and the workings of science. It explores the roots of scientific impact, the role of productivity and creativity, when and what kind of collaborations are effective, the impact of failure and success in a scientific career, and what metrics can tell us about the fundamental workings of science. The book relies on data to draw actionable insights, which can be applied by individuals to further their career or decision makers to enhance the role of science in society. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists and graduate students, policymakers, and administrators with an interest in the wider scientific enterprise.

Contrast Data Mining - Concepts, Algorithms, and Applications (Hardcover): Guozhu Dong, James Bailey Contrast Data Mining - Concepts, Algorithms, and Applications (Hardcover)
Guozhu Dong, James Bailey
R3,458 Discovery Miles 34 580 Ships in 12 - 19 working days

A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life Problems
Contrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and other fields. The book not only presents concepts and techniques for contrast data mining, but also explores the use of contrast mining to solve challenging problems in various scientific, medical, and business domains.

Learn from Real Case Studies of Contrast Mining Applications
In this volume, researchers from around the world specializing in architecture engineering, bioinformatics, computer science, medicine, and systems engineering focus on the mining and use of contrast patterns. They demonstrate many useful and powerful capabilities of a variety of contrast mining techniques and algorithms, including tree-based structures, zero-suppressed binary decision diagrams, data cube representations, and clustering algorithms. They also examine how contrast mining is used in leukemia characterization, discriminative gene transfer and microarray analysis, computational toxicology, spatial and image data classification, voting analysis, heart disease prediction, crime analysis, understanding customer behavior, genetic algorithms, and network security.

Advances in Big Data Analytics - Theory, Algorithms and Practices (Hardcover, 1st ed. 2022): Yong Shi Advances in Big Data Analytics - Theory, Algorithms and Practices (Hardcover, 1st ed. 2022)
Yong Shi
R4,983 Discovery Miles 49 830 Ships in 12 - 19 working days

Today, big data affects countless aspects of our daily lives. This book provides a comprehensive and cutting-edge study on big data analytics, based on the research findings and applications developed by the author and his colleagues in related areas. It addresses the concepts of big data analytics and/or data science, multi-criteria optimization for learning, expert and rule-based data analysis, support vector machines for classification, feature selection, data stream analysis, learning analysis, sentiment analysis, link analysis, and evaluation analysis. The book also explores lessons learned in applying big data to business, engineering and healthcare. Lastly, it addresses the advanced topic of intelligence-quotient (IQ) tests for artificial intelligence. Since each aspect mentioned above concerns a specific domain of application, taken together, the algorithms, procedures, analysis and empirical studies presented here offer a general picture of big data developments. Accordingly, the book can not only serve as a textbook for graduates with a fundamental grasp of training in big data analytics, but can also show practitioners how to use the proposed techniques to deal with real-world big data problems.

Foundations of Predictive Analytics (Hardcover): James Wu, Stephen Coggeshall Foundations of Predictive Analytics (Hardcover)
James Wu, Stephen Coggeshall
R3,069 Discovery Miles 30 690 Ships in 12 - 19 working days

Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish-Fisher expansion and other useful but hard-to-find statistical techniques. It then describes common and unusual linear methods as well as popular nonlinear modeling approaches, including additive models, trees, support vector machine, fuzzy systems, clustering, naive Bayes, and neural nets. The authors go on to cover methodologies used in time series and forecasting, such as ARIMA, GARCH, and survival analysis. They also present a range of optimization techniques and explore several special topics, such as Dempster-Shafer theory. An in-depth collection of the most important fundamental material on predictive analytics, this self-contained book provides the necessary information for understanding various techniques for exploratory data analysis and modeling. It explains the algorithmic details behind each technique (including underlying assumptions and mathematical formulations) and shows how to prepare and encode data, select variables, use model goodness measures, normalize odds, and perform reject inference. Web ResourceThe book's website at www.DataMinerXL.com offers the DataMinerXL software for building predictive models. The site also includes more examples and information on modeling.

Data Mining Methods for the Content Analyst - An Introduction to the Computational Analysis of Content (Hardcover): Kalev... Data Mining Methods for the Content Analyst - An Introduction to the Computational Analysis of Content (Hardcover)
Kalev Leetaru
R4,463 Discovery Miles 44 630 Ships in 12 - 19 working days

With continuous advancements and an increase in user popularity, data mining technologies serve as an invaluable resource for researchers across a wide range of disciplines in the humanities and social sciences. In this comprehensive guide, author and research scientist Kalev Leetaru introduces the approaches, strategies, and methodologies of current data mining techniques, offering insights for new and experienced users alike.

Designed as an instructive reference to computer-based analysis approaches, each chapter of this resource explains a set of core concepts and analytical data mining strategies, along with detailed examples and steps relating to current data mining practices. Every technique is considered with regard to context, theory of operation and methodological concerns, and focuses on the capabilities and strengths relating to these technologies. In addressing critical methodologies and approaches to automated analytical techniques, this work provides an essential overview to a broad innovative field.

Practical Data Mining (Hardcover, New): Jr. Monte F. Hancock Practical Data Mining (Hardcover, New)
Jr. Monte F. Hancock
R2,838 Discovery Miles 28 380 Ships in 12 - 19 working days

Used by corporations, industry, and government to inform and fuel everything from focused advertising to homeland security, data mining can be a very useful tool across a wide range of applications. Unfortunately, most books on the subject are designed for the computer scientist and statistical illuminati and leave the reader largely adrift in technical waters.

Revealing the lessons known to the seasoned expert, yet rarely written down for the uninitiated, Practical Data Mining explains the ins-and-outs of the detection, characterization, and exploitation of actionable patterns in data. This working field manual outlines the what, when, why, and how of data mining and offers an easy-to-follow, six-step spiral process. Catering to IT consultants, professional data analysts, and sophisticated data owners, this systematic, yet informal treatment will help readers answer questions, such as:

  • What process model should I use to plan and execute a data mining project?
  • How is a quantitative business case developed and assessed?
  • What are the skills needed for different data mining projects?
  • How do I track and evaluate data mining projects?
  • How do I choose the best data mining techniques?

Helping you avoid common mistakes, the book describes specific genres of data mining practice. Most chapters contain one or more case studies with detailed projects descriptions, methods used, challenges encountered, and results obtained. The book includes working checklists for each phase of the data mining process. Your passport to successful technical and planning discussions with management, senior scientists, and customers, these checklists lay out the right questions to ask and the right points to make from an insider's point of view.

Visit the book's webpage for access to additional resources-including checklists, figures, PowerPoint slides, and a small set of simple prototype data mining tools.

http: //www.celestech.com/PracticalDataMining

Digital Transformations - New Tools and Methods for Mining Technological Intelligence (Hardcover): Tugrul U Daim, Haydar Yalcin Digital Transformations - New Tools and Methods for Mining Technological Intelligence (Hardcover)
Tugrul U Daim, Haydar Yalcin
R2,658 Discovery Miles 26 580 Ships in 12 - 19 working days

Technology is not just limited to technology companies, it impacts sectors such as healthcare, agriculture, and security. In the last few decades, countries, too, have started developing technologies or integrating technologies into their systems. As a result, all countries, regardless of size, need to understand the management of engineering and technology concepts. Digital Transformations reviews fundamentals and applications through existing and emerging technologies all around the world. Big data availability and the emergence of new tools provide opportunities to detect the emergence of new technologies. Some of the major elements of such analyses include bibliometrics, patent analysis and social network analysis. The authors focus on these three tools and demonstrate their use through applications such as Blockchain, Artificial Intelligence, Robotics, 3D printing, Wireless Power, Autonomous and Electric Driving, and Smart Homes. Through the examination of cases based on emerging technologies, the book provides a spectrum of these recent applications and serves as a reference for professionals, researchers and students on fundamentals of technology utilization tools.

Data Mining Tools for Malware Detection (Hardcover): Mehedy Masud, Latifur Khan, Bhavani Thuraisingham Data Mining Tools for Malware Detection (Hardcover)
Mehedy Masud, Latifur Khan, Bhavani Thuraisingham
R4,060 Discovery Miles 40 600 Ships in 12 - 19 working days

Although the use of data mining for security and malware detection is quickly on the rise, most books on the subject provide high-level theoretical discussions to the near exclusion of the practical aspects. Breaking the mold, Data Mining Tools for Malware Detection provides a step-by-step breakdown of how to develop data mining tools for malware detection. Integrating theory with practical techniques and experimental results, it focuses on malware detection applications for email worms, malicious code, remote exploits, and botnets.

The authors describe the systems they have designed and developed: email worm detection using data mining, a scalable multi-level feature extraction technique to detect malicious executables, detecting remote exploits using data mining, and flow-based identification of botnet traffic by mining multiple log files. For each of these tools, they detail the system architecture, algorithms, performance results, and limitations.

  • Discusses data mining for emerging applications, including adaptable malware detection, insider threat detection, firewall policy analysis, and real-time data mining
  • Includes four appendices that provide a firm foundation in data management, secure systems, and the semantic web
  • Describes the authors tools for stream data mining

From algorithms to experimental results, this is one of the few books that will be equally valuable to those in industry, government, and academia. It will help technologists decide which tools to select for specific applications, managers will learn how to determine whether or not to proceed with a data mining project, and developers will find innovative alternative designs for a range of applications.

Music Data Mining (Hardcover, New): Tao Li, Mitsunori Ogihara, George Tzanetakis Music Data Mining (Hardcover, New)
Tao Li, Mitsunori Ogihara, George Tzanetakis
R3,451 Discovery Miles 34 510 Ships in 12 - 19 working days

The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing. The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classification, it then describes a computational approach inspired by human auditory perception and examines instrument recognition, the effects of music on moods and emotions, and the connections between power laws and music aesthetics. Given the importance of social aspects in understanding music, the text addresses the use of the Web and peer-to-peer networks for both music data mining and evaluating music mining tasks and algorithms. It also discusses indexing with tags and explains how data can be collected using online human computation games. The final chapters offer a balanced exploration of hit song science as well as a look at symbolic musicology and data mining. The multifaceted nature of music information often requires algorithms and systems using sophisticated signal processing and machine learning techniques to better extract useful information. An excellent introduction to the field, this volume presents state-of-the-art techniques in music data mining and information retrieval to create novel ways of interacting with large music collections.

A Practitioner's  Guide to Resampling for Data Analysis, Data Mining, and Modeling (Hardcover, New): Phillip Good A Practitioner's Guide to Resampling for Data Analysis, Data Mining, and Modeling (Hardcover, New)
Phillip Good
R2,076 Discovery Miles 20 760 Ships in 12 - 19 working days

Distribution-free resampling methods permutation tests, decision trees, and the bootstrap are used today in virtually every research area. A Practitioner s Guide to Resampling for Data Analysis, Data Mining, and Modeling explains how to use the bootstrap to estimate the precision of sample-based estimates and to determine sample size, data permutations to test hypotheses, and the readily-interpreted decision tree to replace arcane regression methods.

Highlights

  • Each chapter contains dozens of thought provoking questions, along with applicable R and Stata code
  • Methods are illustrated with examples from agriculture, audits, bird migration, clinical trials, epidemiology, image processing, immunology, medicine, microarrays and gene selection
  • Lists of commercially available software for the bootstrap, decision trees, and permutation tests are incorporated in the text
  • Access to APL, MATLAB, and SC code for many of the routines is provided on the author s website
  • The text covers estimation, two-sample and k-sample univariate, and multivariate comparisons of means and variances, sample size determination, categorical data, multiple hypotheses, and model building

Statistics practitioners will find the methods described in the text easy to learn and to apply in a broad range of subject areas from A for Accounting, Agriculture, Anthropology, Aquatic science, Archaeology, Astronomy, and Atmospheric science to V for Virology and Vocational Guidance, and Z for Zoology.

Practitioners and research workers and in the biomedical, engineering and social sciences, as well as advanced students in biology, business, dentistry, medicine, psychology, public health, sociology, and statistics will find an easily-grasped guide to estimation, testing hypotheses and model building.

Data Mining Techniques in CRM - Inside Customer Segmentation (Hardcover): K Tsiptsis Data Mining Techniques in CRM - Inside Customer Segmentation (Hardcover)
K Tsiptsis
R2,030 Discovery Miles 20 300 Ships in 12 - 19 working days

This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.

Machine Learning Forensics for Law Enforcement, Security, and Intelligence (Hardcover, New): Jesus Mena Machine Learning Forensics for Law Enforcement, Security, and Intelligence (Hardcover, New)
Jesus Mena
R3,896 Discovery Miles 38 960 Ships in 12 - 19 working days

Increasingly, crimes and fraud are digital in nature, occurring at breakneck speed and encompassing large volumes of data. To combat this unlawful activity, knowledge about the use of machine learning technology and software is critical. Machine Learning Forensics for Law Enforcement, Security, and Intelligence integrates an assortment of deductive and instructive tools, techniques, and technologies to arm professionals with the tools they need to be prepared and stay ahead of the game.

Step-by-step instructions

The book is a practical guide on how to conduct forensic investigations using self-organizing clustering map (SOM) neural networks, text extraction, and rule generating software to "interrogate the evidence." This powerful data is indispensable for fraud detection, cybersecurity, competitive counterintelligence, and corporate and litigation investigations. The book also provides step-by-step instructions on how to construct adaptive criminal and fraud detection systems for organizations.

Prediction is the key

Internet activity, email, and wireless communications can be captured, modeled, and deployed in order to anticipate potential cyber attacks and other types of crimes. The successful prediction of human reactions and server actions by quantifying their behaviors is invaluable for pre-empting criminal activity. This volume assists chief information officers, law enforcement personnel, legal and IT professionals, investigators, and competitive intelligence analysts in the strategic planning needed to recognize the patterns of criminal activities in order to predict when and where crimes and intrusions are likely to take place.

Data Mining in Biomedical Imaging, Signaling, and Systems (Hardcover): Sumeet Dua, Rajendra Acharya U. Data Mining in Biomedical Imaging, Signaling, and Systems (Hardcover)
Sumeet Dua, Rajendra Acharya U.
R4,059 Discovery Miles 40 590 Ships in 12 - 19 working days

Data mining can help pinpoint hidden information in medical data and accurately differentiate pathological from normal data. It can help to extract hidden features from patient groups and disease states and can aid in automated decision making. Data Mining in Biomedical Imaging, Signaling, and Systems provides an in-depth examination of the biomedical and clinical applications of data mining. It supplies examples of frequently encountered heterogeneous data modalities and details the applicability of data mining approaches used to address the computational challenges in analyzing complex data. The book details feature extraction techniques and covers several critical feature descriptors. As machine learning is employed in many diagnostic applications, it covers the fundamentals, evaluation measures, and challenges of supervised and unsupervised learning methods. Both feature extraction and supervised learning are discussed as they apply to seizure-related patterns in epilepsy patients. Other specific disorders are also examined with regard to the value of data mining for refining clinical diagnoses, including depression and recurring migraines. The diagnosis and grading of the world's fourth most serious health threat, depression, and analysis of acoustic properties that can distinguish depressed speech from normal are also described. Although a migraine is a complex neurological disorder, the text demonstrates how metabonomics can be effectively applied to clinical practice. The authors review alignment-based clustering approaches, techniques for automatic analysis of biofilm images, and applications of medical text mining, including text classification applied to medical reports. The identification and classification of two life-threatening heart abnormalities, arrhythmia and ischemia, are addressed, and a unique segmentation method for mining a 3-D imaging biomarker, exemplified by evaluation of osteoarthritis, is also present

Data Mining and Machine Learning in Cybersecurity (Hardcover): Sumeet Dua, Xian Du Data Mining and Machine Learning in Cybersecurity (Hardcover)
Sumeet Dua, Xian Du
R2,822 Discovery Miles 28 220 Ships in 12 - 19 working days

With the rapid advancement of information discovery techniques, machine learning and data mining continue to play a significant role in cybersecurity. Although several conferences, workshops, and journals focus on the fragmented research topics in this area, there has been no single interdisciplinary resource on past and current works and possible paths for future research in this area. This book fills this need. From basic concepts in machine learning and data mining to advanced problems in the machine learning domain, Data Mining and Machine Learning in Cybersecurity provides a unified reference for specific machine learning solutions to cybersecurity problems. It supplies a foundation in cybersecurity fundamentals and surveys contemporary challenges-detailing cutting-edge machine learning and data mining techniques. It also: Unveils cutting-edge techniques for detecting new attacks Contains in-depth discussions of machine learning solutions to detection problems Categorizes methods for detecting, scanning, and profiling intrusions and anomalies Surveys contemporary cybersecurity problems and unveils state-of-the-art machine learning and data mining solutions Details privacy-preserving data mining methods This interdisciplinary resource includes technique review tables that allow for speedy access to common cybersecurity problems and associated data mining methods. Numerous illustrative figures help readers visualize the workflow of complex techniques and more than forty case studies provide a clear understanding of the design and application of data mining and machine learning techniques in cybersecurity.

Security and Policy Driven Computing (Hardcover, New): Lei Liu Security and Policy Driven Computing (Hardcover, New)
Lei Liu
R4,939 Discovery Miles 49 390 Ships in 12 - 19 working days

Security and Policy Driven Computing covers recent advances in security, storage, parallelization, and computing as well as applications. The author incorporates a wealth of analysis, including studies on intrusion detection and key management, computer storage policy, and transactional management. The book first describes multiple variables and index structure derivation for high dimensional data distribution and applies numeric methods to proposed search methods. It also focuses on discovering relations, logic, and knowledge for policy management. To manage performance, the text discusses contention management for transactional structures, buffer tuning, and test environments. It then illustrates search optimization using truncated functions with paralleled techniques. The final chapters present structures, recovery, message conflicts, and test coverage of quantum policies and explain methods of quantum protection for intrusion prevention. An overview of security and policy applications for systems and computing, this book explores the latest R&D, emerging technology, and state-of-the-art technical studies of security and policy issues. It also looks to future research and technologies that will propel the innovation of next-generation systems.

Privacy-Aware Knowledge Discovery - Novel Applications and New Techniques (Hardcover, New): Francesco Bonchi, Elena Ferrari Privacy-Aware Knowledge Discovery - Novel Applications and New Techniques (Hardcover, New)
Francesco Bonchi, Elena Ferrari
R3,473 Discovery Miles 34 730 Ships in 12 - 19 working days

Covering research at the frontier of this field, Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques presents state-of-the-art privacy-preserving data mining techniques for application domains, such as medicine and social networks, that face the increasing heterogeneity and complexity of new forms of data. Renowned authorities from prominent organizations not only cover well-established results -- they also explore complex domains where privacy issues are generally clear and well defined, but the solutions are still preliminary and in continuous development. Divided into seven parts, the book provides in-depth coverage of the most novel reference scenarios for privacy-preserving techniques. The first part gives general techniques that can be applied to various applications discussed in the rest of the book. The second section focuses on the sanitization of network traces and privacy in data stream mining. After the third part on privacy in spatio-temporal data mining and mobility data analysis, the book examines time series analysis in the fourth section, explaining how a perturbation method and a segment-based method can tackle privacy issues of time series data. The fifth section on biomedical data addresses genomic data as well as the problem of privacy-aware information sharing of health data. In the sixth section on web applications, the book deals with query log mining and web recommender systems. The final part on social networks analyzes privacy issues related to the management of social network data under different perspectives. While several new results have recently occurred in the privacy, database, and data mining research communities, a uniform presentation of up-to-date techniques and applications is lacking. Filling this void, Privacy-Aware Knowledge Discovery presents novel algorithms, patterns, and models, along with a significant collection of open problems for future investigation.

Introduction to Privacy-Preserving Data Publishing - Concepts and Techniques (Hardcover, New): Benjamin C M Fung, Ke Wang, Ada... Introduction to Privacy-Preserving Data Publishing - Concepts and Techniques (Hardcover, New)
Benjamin C M Fung, Ke Wang, Ada Wai-Chee Fu, Philip S. Yu
R4,200 Discovery Miles 42 000 Ships in 12 - 19 working days

Gaining access to high-quality data is a vital necessity in knowledge-based decision making. But data in its raw form often contains sensitive information about individuals. Providing solutions to this problem, the methods and tools of privacy-preserving data publishing enable the publication of useful information while protecting data privacy. Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques presents state-of-the-art information sharing and data integration methods that take into account privacy and data mining requirements.

The first part of the book discusses the fundamentals of the field. In the second part, the authors present anonymization methods for preserving information utility for specific data mining tasks. The third part examines the privacy issues, privacy models, and anonymization methods for realistic and challenging data publishing scenarios. While the first three parts focus on anonymizing relational data, the last part studies the privacy threats, privacy models, and anonymization methods for complex data, including transaction, trajectory, social network, and textual data.

This book not only explores privacy and information utility issues but also efficiency and scalability challenges. In many chapters, the authors highlight efficient and scalable methods and provide an analytical discussion to compare the strengths and weaknesses of different solutions.

Guide to Data Structures - A Concise Introduction Using Java (Paperback, 1st ed. 2017): James T. Streib, Takako Soma Guide to Data Structures - A Concise Introduction Using Java (Paperback, 1st ed. 2017)
James T. Streib, Takako Soma
R1,341 Discovery Miles 13 410 Ships in 12 - 19 working days

This accessible and engaging textbook/guide provides a concise introduction to data structures and associated algorithms. Emphasis is placed on the fundamentals of data structures, enabling the reader to quickly learn the key concepts, and providing a strong foundation for later studies of more complex topics. The coverage includes discussions on stacks, queues, lists, (using both arrays and links), sorting, and elementary binary trees, heaps, and hashing. This content is also a natural continuation from the material provided in the separate Springer title Guide to Java by the same authors.Topics and features: reviews the preliminary concepts, and introduces stacks and queues using arrays, along with a discussion of array-based lists; examines linked lists, the implementation of stacks and queues using references, binary trees, a range of varied sorting techniques, heaps, and hashing; presents both primitive and generic data types in each chapter, and makes use of contour diagrams to illustrate object-oriented concepts; includes chapter summaries, and asks the reader questions to help them interact with the material; contains numerous examples and illustrations, and one or more complete program in every chapter; provides exercises at the end of each chapter, as well as solutions to selected exercises, and a glossary of important terms. This clearly-written work is an ideal classroom text for a second semester course in programming using the Java programming language, in preparation for a subsequent advanced course in data structures and algorithms. The book is also eminently suitable as a self-study guide in either academe or industry.

Advanced Query Processing - Volume 1: Issues and Trends (Hardcover, 2013 ed.): Barbara Catania, Lakhmi C. Jain Advanced Query Processing - Volume 1: Issues and Trends (Hardcover, 2013 ed.)
Barbara Catania, Lakhmi C. Jain
R2,925 Discovery Miles 29 250 Ships in 10 - 15 working days

This research book presents key developments, directions, and challenges concerning advanced query processing for both traditional and non-traditional data. A special emphasis is devoted to approximation and adaptivity issues as well as to the integration of heterogeneous data sources. The book will prove useful as a reference book for senior undergraduate or graduate courses on advanced data management issues, which have a special focus on query processing and data integration. It is aimed for technologists, managers, and developers who want to know more about emerging trends in advanced query processing.

Variants of Evolutionary Algorithms for Real-World Applications (Hardcover, 2012): Raymond Chiong, Thomas Weise, Zbigniew... Variants of Evolutionary Algorithms for Real-World Applications (Hardcover, 2012)
Raymond Chiong, Thomas Weise, Zbigniew Michalewicz
R2,975 Discovery Miles 29 750 Ships in 10 - 15 working days

Evolutionary Algorithms (EAs) are population-based, stochastic search algorithms that mimic natural evolution. Due to their ability to find excellent solutions for conventionally hard and dynamic problems within acceptable time, EAs have attracted interest from many researchers and practitioners in recent years. This book "Variants of Evolutionary Algorithms for Real-World Applications" aims to promote the practitioner's view on EAs by providing a comprehensive discussion of how EAs can be adapted to the requirements of various applications in the real-world domains. It comprises 14 chapters, including an introductory chapter re-visiting the fundamental question of what an EA is and other chapters addressing a range of real-world problems such as production process planning, inventory system and supply chain network optimisation, task-based jobs assignment, planning for CNC-based work piece construction, mechanical/ship design tasks that involve runtime-intense simulations, data mining for the prediction of soil properties, automated tissue classification for MRI images, and database query optimisation, among others. These chapters demonstrate how different types of problems can be successfully solved using variants of EAs and how the solution approaches are constructed, in a way that can be understood and reproduced with little prior knowledge on optimisation.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Two-Factor Authentication
Mark Stanislav Paperback R534 Discovery Miles 5 340
Visual Content Indexing and Retrieval…
Jenny Benois-Pineau, Patrick Le Callet Hardcover R3,595 Discovery Miles 35 950
Handbook of Research on Civil Society…
Metodi Hadji-Janev, Mitko Bogdanoski Hardcover R8,935 Discovery Miles 89 350
Unicorn Coloring Book for Kids Ages 4-8…
Clever Kiddo Hardcover R654 R597 Discovery Miles 5 970
Enabling AI Applications in Data Science
Aboul Ella Hassanien, Mohamed Hamed N. Taha, … Hardcover R5,659 Discovery Miles 56 590
Safety and Security Issues in Technical…
David Rehak, Ales Bernatik, … Hardcover R5,953 Discovery Miles 59 530
Artificial Intelligence-based…
Jordi Guijarro, Saber Mhiri, … Hardcover R2,864 Discovery Miles 28 640
R-CALCULUS: A Logic of Belief Revision
Wei Li, Yuefei Sui Hardcover R4,109 Discovery Miles 41 090
Handbook of Research on Big Data…
Jose Machado, Hugo Peixoto, … Hardcover R11,492 Discovery Miles 114 920
The Fourth Industrial Revolution…
Allam Hamdan, Aboul Ella Hassanien, … Hardcover R5,174 Discovery Miles 51 740

 

Partners