![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
This 2 volume-set of IFIP AICT 583 and 584 constitutes the refereed proceedings of the 16th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2020, held in Neos Marmaras, Greece, in June 2020.* The 70 full papers and 5 short papers presented were carefully reviewed and selected from 149 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: Part I: classification; clustering - unsupervised learning -analytics; image processing; learning algorithms; neural network modeling; object tracking - object detection systems; ontologies - AI; and sentiment analysis - recommender systems. Part II: AI ethics - law; AI constraints; deep learning - LSTM; fuzzy algebra - fuzzy systems; machine learning; medical - health systems; and natural language. *The conference was held virtually due to the COVID-19 pandemic.
This 2 volume-set of IFIP AICT 583 and 584 constitutes the refereed proceedings of the 16th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2020, held in Neos Marmaras, Greece, in June 2020.* The 70 full papers and 5 short papers presented were carefully reviewed and selected from 149 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: Part I: classification; clustering - unsupervised learning -analytics; image processing; learning algorithms; neural network modeling; object tracking - object detection systems; ontologies - AI; and sentiment analysis - recommender systems. Part II: AI ethics - law; AI constraints; deep learning - LSTM; fuzzy algebra - fuzzy systems; machine learning; medical - health systems; and natural language. *The conference was held virtually due to the COVID-19 pandemic.
This book gathers authoritative contributions in the field of Soft Computing. Based on selected papers presented at the 7th World Conference on Soft Computing, which was held on May 29-31, 2018, in Baku, Azerbaijan, it describes new theoretical advances, as well as cutting-edge methods and applications. New theories and algorithms in fuzzy logic, cognitive modeling, graph theory and metaheuristics are discussed, and applications in data mining, social networks, control and robotics, geoscience, biomedicine and industrial management are described. This book offers a timely, broad snapshot of recent developments, including thought-provoking trends and challenges that are yielding new research directions in the diverse areas of Soft Computing.
" Data Mining Applications with R" is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the
RDataMining.com website.
The book highlights new trends and challenges in research on agents and the new digital and knowledge economy. It includes papers on business process management, agent-based modeling and simulation and anthropic-oriented computing that were originally presented at the 14th International KES Conference on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2020), being held as a Virtual Conference in June 17-19, 2020. The respective papers cover topics such as software agents, multi-agent systems, agent modeling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems and nature inspired manufacturing, all of which contribute to the modern digital economy.
This book addresses emerging issues concerning the integration of artificial intelligence systems in our daily lives. It focuses on the cognitive, visual, social and analytical aspects of computing and intelligent technologies, and highlights ways to improve the acceptance, effectiveness, and efficiency of said technologies. Topics such as responsibility, integration and training are discussed throughout. The book also reports on the latest advances in systems engineering, with a focus on societal challenges and next-generation systems and applications for meeting them. Further, it covers some cutting-edge issues in energy, including intelligent control systems for power plant, and technology acceptance models. Based on the AHFE 2021 Conferences on Human Factors in Software and Systems Engineering, Artificial Intelligence and Social Computing, and Energy, held virtually on 25-29 July, 2021, from USA, this book provides readers with extensive information on current research and future challenges in these fields, together with practical insights into the development of innovative services for various purposes.
This book presents research in artificial techniques using intelligence for energy transition, outlining several applications including production systems, energy production, energy distribution, energy management, renewable energy production, cyber security, industry 4.0 and internet of things etc. The book goes beyond standard application by placing a specific focus on the use of AI techniques to address the challenges related to the different applications and topics of energy transition. The contributions are classified according to the market and actor interactions (service providers, manufacturers, customers, integrators, utilities etc.), to the SG architecture model (physical layer, infrastructure layer, and business layer), to the digital twin of SG (business model, operational model, fault/transient model, and asset model), and to the application domain (demand side management, load monitoring, micro grids, energy consulting (residents, utilities), energy saving, dynamic pricing revenue management and smart meters, etc.).
This book records the new research findings and development in the field of industrial engineering and engineering management, and it will serve as the guidebook for the potential development in future. It gathers the accepted papers from the 25th International conference on Industrial Engineering and Engineering Management held at Anhui University of Technology in Maanshan during August 24-25, 2019. The aim of this conference was to provide a high-level international forum for experts, scholars and entrepreneurs at home and abroad to present the recent advances, new techniques and application, to promote discussion and interaction among academics, researchers and professionals to promote the developments and applications of the related theories and technologies in universities and enterprises, and to establish business or research relations to find global partners for future collaboration in the field of Industrial Engineering. It addresses diverse themes in smart manufacturing, artificial intelligence, ergonomics, simulation and modeling, quality and reliability, logistics engineering, data mining and other related fields. This timely book summarizes and promotes the latest achievements in the field of industrial engineering and related fields over the past year, proposing prospects and vision for the further development.
Introduction to the Theories and Varieties of Modern Crime in Financial Markets explores statistical methods and data mining techniques that, if used correctly, can help with crime detection and prevention. The three sections of the book present the methods, techniques, and approaches for recognizing, analyzing, and ultimately detecting and preventing financial frauds, especially complex and sophisticated crimes that characterize modern financial markets. The first two sections appeal to readers with technical backgrounds, describing data analysis and ways to manipulate markets and commit crimes. The third section gives life to the information through a series of interviews with bankers, regulators, lawyers, investigators, rogue traders, and others. The book is sharply focused on analyzing the origin of a crime from an economic perspective, showing Big Data in action, noting both the pros and cons of this approach.
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they're also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you'll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today's messy glut of data holds answers to questions no one's even thought to ask. This book provides you with the know-how to dig those answers out.
The collection and analysis of data play an important role in many fields of science and technology, such as computational biology, quantitative finance, information engineering, machine learning, neuroscience, medicine, and the social sciences. Especially in the era of big data, researchers can easily collect data characterised by massive dimensions and complexity. In celebration of Professor Kai-Tai Fang's 80th birthday, we present this book, which furthers new and exciting developments in modern statistical theories, methods and applications. The book features four review papers on Professor Fang's numerous contributions to the fields of experimental design, multivariate analysis, data mining and education. It also contains twenty research articles contributed by prominent and active figures in their fields. The articles cover a wide range of important topics such as experimental design, multivariate analysis, data mining, hypothesis testing and statistical models.
This book constitutes the refereed post-conference proceedings of the Third IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2020, held in Chennai, India, in February 2020.The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: computational intelligence for text analysis; computational intelligence for image and video analysis; and data science.
This book analyzes techniques that use the direct and inverse fuzzy transform for image processing and data analysis. The book is divided into two parts, the first of which describes methods and techniques that use the bi-dimensional fuzzy transform method in image analysis. In turn, the second describes approaches that use the multidimensional fuzzy transform method in data analysis. An F-transform in one variable is defined as an operator which transforms a continuous function f on the real interval [a,b] in an n-dimensional vector by using n-assigned fuzzy sets A1, ... , An which constitute a fuzzy partition of [a,b]. Then, an inverse F-transform is defined in order to convert the n-dimensional vector output in a continuous function that equals f up to an arbitrary quantity . We may limit this concept to the finite case by defining the discrete F-transform of a function f in one variable, even if it is not known a priori. A simple extension of this concept to functions in two variables allows it to be used for the coding/decoding and processing of images. Moreover, an extended version with multidimensional functions can be used to address a host of topics in data analysis, including the analysis of large and very large datasets. Over the past decade, many researchers have proposed applications of fuzzy transform techniques for various image processing topics, such as image coding/decoding, image reduction, image segmentation, image watermarking and image fusion; and for such data analysis problems as regression analysis, classification, association rule extraction, time series analysis, forecasting, and spatial data analysis. The robustness, ease of use, and low computational complexity of fuzzy transforms make them a powerful fuzzy approximation tool suitable for many computer science applications. This book presents methods and techniques based on the use of fuzzy transforms in various applications of image processing and data analysis, including image segmentation, image tamper detection, forecasting, and classification, highlighting the benefits they offer compared with traditional methods. Emphasis is placed on applications of fuzzy transforms to innovative problems, such as massive data mining, and image and video security in social networks based on the application of advanced fragile watermarking systems. This book is aimed at researchers, students, computer scientists and IT developers to acquire the knowledge and skills necessary to apply and implement fuzzy transforms-based techniques in image and data analysis applications.
This book provides step-by-step explanations of successful implementations and practical applications of machine learning. The book's GitHub page contains software codes to assist readers in adapting materials and methods for their own use. A wide variety of applications are discussed, including wireless mesh network and power systems optimization; computer vision; image and facial recognition; protein prediction; data mining; and data discovery. Numerous state-of-the-art machine learning techniques are employed (with detailed explanations), including biologically-inspired optimization (genetic and other evolutionary algorithms, swarm intelligence); Viola Jones face detection; Gaussian mixture modeling; support vector machines; deep convolutional neural networks with performance enhancement techniques (including network design, learning rate optimization, data augmentation, transfer learning); spiking neural networks and timing dependent plasticity; frequent itemset mining; binary classification; and dynamic programming. This book provides valuable information on effective, cutting-edge techniques, and approaches for students, researchers, practitioners, and teachers in the field of machine learning.
This book introduces research presented at the "International Conference on Artificial Intelligence: Advances and Applications-2019 (ICAIAA 2019)," a two-day conference and workshop bringing together leading academicians, researchers as well as students to share their experiences and findings on all aspects of engineering applications of artificial intelligence. The book covers research in the areas of artificial intelligence, machine learning, and deep learning applications in health care, agriculture, business and security. It also includes research in core concepts of computer networks, intelligent system design and deployment, real-time systems, WSN, sensors and sensor nodes, SDN and NFV. As such it is a valuable resource for students, academics and practitioners in industry working on AI applications.
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers and case studies related to all the areas of data mining, machine learning, Internet of things (IoT) and information security.
This book reports on cutting-edge theories and methods for analyzing complex systems, such as transportation and communication networks and discusses multi-disciplinary approaches to dependability problems encountered when dealing with complex systems in practice. The book presents the most noteworthy methods and results discussed at the International Conference on Reliability and Statistics in Transportation and Communication (RelStat), which took place remotely from Riga, Latvia, on October 14 - 17, 2020. It spans a broad spectrum of topics, from mathematical models and design methodologies, to software engineering, data security and financial issues, as well as practical problems in technical systems, such as transportation and telecommunications, and in engineering education.
This book presents a comprehensive review for Knowledge Engineering tools and techniques that can be used in Artificial Intelligence Planning and Scheduling. KE tools can be used to aid in the acquisition of knowledge and in the construction of domain models, which this book will illustrate. AI planning engines require a domain model which captures knowledge about how a particular domain works - e.g. the objects it contains and the available actions that can be used. However, encoding a planning domain model is not a straightforward task - a domain expert may be needed for their insight into the domain but this information must then be encoded in a suitable representation language. The development of such domain models is both time-consuming and error-prone. Due to these challenges, researchers have developed a number of automated tools and techniques to aid in the capture and representation of knowledge. This book targets researchers and professionals working in knowledge engineering, artificial intelligence and software engineering. Advanced-level students studying AI will also be interested in this book.
This two-volume set constitutes the post-conference proceedings of the 4th EAI International Conference on Advanced Hybrid Information Processing, ADHIP 2020, held in Binzhou, China, in September 2020. Due to COVID-19 the conference was held virtually. The 89 papers presented were selected from 190 submissions and focus on theory and application of hybrid information processing technology for smarter and more effective research and application. The theme of ADHIP 2020 was "Industrial applications of aspects with big data". The papers are named in topical sections as follows: Industrial application of multi-modal information processing; Industrialized big data processing; Industrial automation and intelligent control; Visual information processing.
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
This book includes high-quality papers presented at the International Conference on Data Science and Management (ICDSM 2019), organised by the Gandhi Institute for Education and Technology, Bhubaneswar, from 22 to 23 February 2019. It features research in which data science is used to facilitate the decision-making process in various application areas, and also covers a wide range of learning methods and their applications in a number of learning problems. The empirical studies, theoretical analyses and comparisons to psychological phenomena described contribute to the development of products to meet market demands.
This book comprises select peer-reviewed proceedings of the international conference on Research in Intelligent and Computing in Engineering (RICE 2020) held at Thu Dau Mot University, Vietnam. The volume primarily focuses on latest research and advances in various computing models such as centralized, distributed, cluster, grid, and cloud computing. Practical examples and real-life applications of wireless sensor networks, mobile ad hoc networks, and internet of things, data mining and machine learning are also covered in the book. The contents aim to enable researchers and professionals to tackle the rapidly growing needs of network applications and the various complexities associated with them.
Google Data Studio is becoming a go-to tool in the analytics community. All business roles across the industry benefit from foundational knowledge of this now-essential technology, and Google Data Studio for Beginners is here to provide it. Release your locked-up data and turn it into beautiful, actionable, and shareable reports that can be consumed by experts and novices alike. Authors Grant Kemp and Gerry White begin by walking you through the basics, such how to create simple dashboards and interactive visualizations. As you progress through Google Data Studio for Beginners, you will build up the knowledge necessary to blend multiple data sources and create comprehensive marketing dashboards. Some intermediate features such as calculated fields, cleaning up data, and data blending to build powerhouse reports are featured as well. Presenting your data in client-ready, digestible forms is a key factor that many find to be a roadblock, and this book will help strengthen this essential skill in your organization. Centralizing the power from sources such as Google Analytics, online surveys, and a multitude of other popular data management tools puts you as a business leader and analyzer ahead of the rest. Your team as a whole will benefit from Google Data Studio for Beginners, because by using these tools, teams can collaboratively work on data to build their understanding and turn their data into action. Data Studio is quickly solidifying itself as the industry standard, and you don't want to miss this essential guide for excelling in it. What You Will Learn Combine various data sources to create great looking and actionable visualizations Reuse and modify other dashboards that have been created by industry pros Use intermediate features such as calculated fields and data blending to build powerhouse reports Who This Book Is For Users looking to learn Google Analytics, SEO professionals, digital marketers, and other business professionals who want to mine their data into an actionable dashboard. |
![]() ![]() You may like...
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R7,372
Discovery Miles 73 720
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R10,307
Discovery Miles 103 070
Clinical Decision Support and Beyond…
Robert Greenes, Guilherme Del Fiol
Paperback
|