0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (80)
  • R500+ (3,440)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Databases > Data mining

Big Data, Mining, and Analytics - Components of Strategic Decision Making (Hardcover): Stephan Kudyba Big Data, Mining, and Analytics - Components of Strategic Decision Making (Hardcover)
Stephan Kudyba
R2,043 Discovery Miles 20 430 Ships in 10 - 15 working days

There is an ongoing data explosion transpiring that will make previous creations, collections, and storage of data look trivial. Big Data, Mining, and Analytics: Components of Strategic Decision Making ties together big data, data mining, and analytics to explain how readers can leverage them to extract valuable insights from their data. Facilitating a clear understanding of big data, it supplies authoritative insights from expert contributors into leveraging data resources, including big data, to improve decision making. Illustrating basic approaches of business intelligence to the more complex methods of data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining. Includes a foreword by Thomas H. Davenport, Distinguished Professor, Babson College; Fellow, MIT Center for Digital Business; and Co-Founder, International Institute for Analytics Introduces text mining and the transforming of unstructured data into useful information Examines real time wireless medical data acquisition for today's healthcare and data mining challenges Presents the contributions of big data experts from academia and industry, including SAS Highlights the most exciting emerging technologies for big data Filled with examples that illustrate the value of analytics throughout, the book outlines a conceptual framework for data modeling that can help you immediately improve your own analytics and decision-making processes. It also provides in-depth coverage of analyzing unstructured data with text mining methods.

Mathematical Tools for Data Mining - Set Theory, Partial Orders, Combinatorics (Hardcover, 2nd ed. 2014): Dan A. Simovici,... Mathematical Tools for Data Mining - Set Theory, Partial Orders, Combinatorics (Hardcover, 2nd ed. 2014)
Dan A. Simovici, Chabane Djeraba
R4,861 Discovery Miles 48 610 Ships in 18 - 22 working days

Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book. Topics include partially ordered sets, combinatorics, general topology, metric spaces, linear spaces, graph theory. To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc. The book is intended as a reference for researchers and graduate students. The current edition is a significant expansion of the first edition. We strived to make the book self-contained and only a general knowledge of mathematics is required. More than 700 exercises are included and they form an integral part of the material. Many exercises are in reality supplemental material and their solutions are included.

Multi-Label Dimensionality Reduction (Hardcover, New): Liang Sun, Shuiwang Ji, Jieping Ye Multi-Label Dimensionality Reduction (Hardcover, New)
Liang Sun, Shuiwang Ji, Jieping Ye
R3,224 Discovery Miles 32 240 Ships in 10 - 15 working days

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications. Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological developments, theoretical properties, computational aspects, and applications of many multi-label dimensionality reduction algorithms. It explores numerous research questions, including: How to fully exploit label correlations for effective dimensionality reduction How to scale dimensionality reduction algorithms to large-scale problems How to effectively combine dimensionality reduction with classification How to derive sparse dimensionality reduction algorithms to enhance model interpretability How to perform multi-label dimensionality reduction effectively in practical applications The authors emphasize their extensive work on dimensionality reduction for multi-label learning. Using a case study of Drosophila gene expression pattern image annotation, they demonstrate how to apply multi-label dimensionality reduction algorithms to solve real-world problems. A supplementary website provides a MATLAB (R) package for implementing popular dimensionality reduction algorithms.

Data Mining Mobile Devices (Hardcover): Jesus Mena Data Mining Mobile Devices (Hardcover)
Jesus Mena
R1,886 Discovery Miles 18 860 Ships in 10 - 15 working days

With today's consumers spending more time on their mobiles than on their PCs, new methods of empirical stochastic modeling have emerged that can provide marketers with detailed information about the products, content, and services their customers desire. Data Mining Mobile Devices defines the collection of machine-sensed environmental data pertaining to human social behavior. It explains how the integration of data mining and machine learning can enable the modeling of conversation context, proximity sensing, and geospatial location throughout large communities of mobile users. Examines the construction and leveraging of mobile sites Describes how to use mobile apps to gather key data about consumers' behavior and preferences Discusses mobile mobs, which can be differentiated as distinct marketplaces-including Apple (R), Google (R), Facebook (R), Amazon (R), and Twitter (R) Provides detailed coverage of mobile analytics via clustering, text, and classification AI software and techniques Mobile devices serve as detailed diaries of a person, continuously and intimately broadcasting where, how, when, and what products, services, and content your consumers desire. The future is mobile-data mining starts and stops in consumers' pockets. Describing how to analyze Wi-Fi and GPS data from websites and apps, the book explains how to model mined data through the use of artificial intelligence software. It also discusses the monetization of mobile devices' desires and preferences that can lead to the triangulated marketing of content, products, or services to billions of consumers-in a relevant, anonymous, and personal manner.

Mobile Data Mining and Applications (Hardcover, 1st ed. 2019): Hao Jiang, Qimei Chen, Yuanyuan Zeng, Deshi Li Mobile Data Mining and Applications (Hardcover, 1st ed. 2019)
Hao Jiang, Qimei Chen, Yuanyuan Zeng, Deshi Li
R3,346 Discovery Miles 33 460 Ships in 18 - 22 working days

This book focuses on mobile data and its applications in the wireless networks of the future. Several topics form the basis of discussion, from a mobile data mining platform for collecting mobile data, to mobile data processing, and mobile feature discovery. Usage of mobile data mining is addressed in the context of three applications: wireless communication optimization, applications of mobile data mining on the cellular networks of the future, and how mobile data shapes future cities. In the discussion of wireless communication optimization, both licensed and unlicensed spectra are exploited. Advanced topics include mobile offloading, resource sharing, user association, network selection and network coexistence. Mathematical tools, such as traditional convexappl/non-convex, stochastic processing and game theory are used to find objective solutions. Discussion of the applications of mobile data mining to cellular networks of the future includes topics such as green communication networks, 5G networks, and studies of the problems of cell zooming, power control, sleep/wake, and energy saving. The discussion of mobile data mining in the context of smart cities of the future covers applications in urban planning and environmental monitoring: the technologies of deep learning, neural networks, complex networks, and network embedded data mining. Mobile Data Mining and Applications will be of interest to wireless operators, companies, governments as well as interested end users.

Data Analysis Using SQL and Excel, 2e (Paperback, 2nd Edition): GS Linoff Data Analysis Using SQL and Excel, 2e (Paperback, 2nd Edition)
GS Linoff 1
R1,201 Discovery Miles 12 010 Ships in 10 - 15 working days

A practical guide to data mining using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis SQL and Excel to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases. You'll learn the fundamental techniques before moving into the "where" and "why" of each analysis, and then learn how to design and perform these analyses using SQL and Excel. Examples include SQL and Excel code, and the appendix shows how non-standard constructs are implemented in other major databases, including Oracle and IBM DB2/UDB. The companion website includes datasets and Excel spreadsheets, and the book provides hints, warnings, and technical asides to help you every step of the way. Data Analysis Using SQL and Excel, 2nd Edition shows you how to perform a wide range of sophisticated analyses using these simple tools, sparing you the significant expense of proprietary data mining tools like SAS. * Understand core analytic techniques that work with SQL and Excel * Ensure your analytic approach gets you the results you need * Design and perform your analysis using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to best use the tools you already know to achieve expert results.

Advances in Machine Learning and Data Mining for Astronomy (Hardcover): Michael J. Way, Jeffrey D. Scargle, Kamal M. Ali, Ashok... Advances in Machine Learning and Data Mining for Astronomy (Hardcover)
Michael J. Way, Jeffrey D. Scargle, Kamal M. Ali, Ashok N. Srivastava
R4,285 Discovery Miles 42 850 Ships in 10 - 15 working days

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

Data Mining and Statistics for Decision Making (Hardcover, New): S. Tuffery Data Mining and Statistics for Decision Making (Hardcover, New)
S. Tuffery
R2,036 Discovery Miles 20 360 Ships in 10 - 15 working days

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives.

This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations.

Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques.Starts from basic principles up to advanced concepts.Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software.Gives practical tips for data mining implementation to solve real world problems.Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring.Supported by an accompanying website hosting datasets and user analysis.

Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception (Hardcover, Edition.):... Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception (Hardcover, Edition.)
Edward Y. Chang
R3,997 Discovery Miles 39 970 Ships in 10 - 15 working days

"Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception"" "covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions.

The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval.

Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.

Clustering - A Data Recovery Approach, Second Edition (Hardcover, 2nd edition): Boris Mirkin Clustering - A Data Recovery Approach, Second Edition (Hardcover, 2nd edition)
Boris Mirkin
R4,235 Discovery Miles 42 350 Ships in 10 - 15 working days

Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods K-Means for partitioning and Ward's method for hierarchical clustering have lacked the theoretical underpinning required to establish a firm relationship between the two methods and relevant interpretation aids. Other approaches, such as spectral clustering or consensus clustering, are considered absolutely unrelated to each other or to the two above mentioned methods.

Clustering: A Data Recovery Approach, Second Edition presents a unified modeling approach for the most popular clustering methods: the K-Means and hierarchical techniques, especially for divisive clustering. It significantly expands coverage of the mathematics of data recovery, and includes a new chapter covering more recent popular network clustering approaches spectral, modularity and uniform, additive, and consensus treated within the same data recovery approach. Another added chapter covers cluster validation and interpretation, including recent developments for ontology-driven interpretation of clusters. Altogether, the insertions added a hundred pages to the book, even in spite of the fact that fragments unrelated to the main topics were removed.

Illustrated using a set of small real-world datasets and more than a hundred examples, the book is oriented towards students, practitioners, and theoreticians of cluster analysis. Covering topics that are beyond the scope of most texts, the author s explanations of data recovery methods, theory-based advice, pre- and post-processing issues and his clear, practical instructions for real-world data mining make this book ideally suited for teaching, self-study, and professional reference.

Big Data Fundamentals - Concepts, Drivers & Techniques (Paperback): Thomas Erl, Wajid Khattak, Paul Buhler Big Data Fundamentals - Concepts, Drivers & Techniques (Paperback)
Thomas Erl, Wajid Khattak, Paul Buhler
R827 R773 Discovery Miles 7 730 Save R54 (7%) Ships in 9 - 17 working days

"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning

Machine Learning and Knowledge Discovery for Engineering Systems Health Management (Hardcover, New): Ashok N. Srivastava,... Machine Learning and Knowledge Discovery for Engineering Systems Health Management (Hardcover, New)
Ashok N. Srivastava, Jiawei Han
R3,970 Discovery Miles 39 700 Ships in 10 - 15 working days

Machine Learning and Knowledge Discovery for Engineering Systems Health Management presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. With contributions from many top authorities on the subject, this volume is the first to bring together the two areas of machine learning and systems health management. Divided into three parts, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management. The first part of the text describes data-driven methods for anomaly detection, diagnosis, and prognosis of massive data streams and associated performance metrics. It also illustrates the analysis of text reports using novel machine learning approaches that help detect and discriminate between failure modes. The second part focuses on physics-based methods for diagnostics and prognostics, exploring how these methods adapt to observed data. It covers physics-based, data-driven, and hybrid approaches to studying damage propagation and prognostics in composite materials and solid rocket motors. The third part discusses the use of machine learning and physics-based approaches in distributed data centers, aircraft engines, and embedded real-time software systems. Reflecting the interdisciplinary nature of the field, this book shows how various machine learning and knowledge discovery techniques are used in the analysis of complex engineering systems. It emphasizes the importance of these techniques in managing the intricate interactions within and between the systems to maintain a high degree of reliability.

Bayesian Analysis with Excel and R (Paperback): Conrad Carlberg Bayesian Analysis with Excel and R (Paperback)
Conrad Carlberg
R1,050 R958 Discovery Miles 9 580 Save R92 (9%) Ships in 9 - 17 working days

Leverage the full power of Bayesian analysis for competitive advantage Bayesian methods can solve problems you can't reliably handle any other way. Building on your existing Excel analytics skills and experience, Microsoft Excel MVP Conrad Carlberg helps you make the most of Excel's Bayesian capabilities and move toward R to do even more. Step by step, with real-world examples, Carlberg shows you how to use Bayesian analytics to solve a wide array of real problems. Carlberg clarifies terminology that often bewilders analysts, and offers sample R code to take advantage of the rethinking package in R and its gateway to Stan. As you incorporate these Bayesian approaches into your analytical toolbox, you'll build a powerful competitive advantage for your organization-and yourself. Explore key ideas and strategies that underlie Bayesian analysis Distinguish prior, likelihood, and posterior distributions, and compare algorithms for driving sampling inputs Use grid approximation to solve simple univariate problems, and understand its limits as parameters increase Perform complex simulations and regressions with quadratic approximation and Richard McElreath's quap function Manage text values as if they were numeric Learn today's gold-standard Bayesian sampling technique: Markov Chain Monte Carlo (MCMC) Use MCMC to optimize execution speed in high-complexity problems Discover when frequentist methods fail and Bayesian methods are essential-and when to use both in tandem

Customer and Business Analytics - Applied Data Mining for Business Decision Making Using R (Paperback): Daniel S. Putler,... Customer and Business Analytics - Applied Data Mining for Business Decision Making Using R (Paperback)
Daniel S. Putler, Robert E. Krider
R2,353 Discovery Miles 23 530 Ships in 10 - 15 working days

Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the text is ideal for students in customer and business analytics or applied data mining as well as professionals in small- to medium-sized organizations. The book offers an intuitive understanding of how different analytics algorithms work. Where necessary, the authors explain the underlying mathematics in an accessible manner. Each technique presented includes a detailed tutorial that enables hands-on experience with real data. The authors also discuss issues often encountered in applied data mining projects and present the CRISP-DM process model as a practical framework for organizing these projects. Showing how data mining can improve the performance of organizations, this book and its R-based software provide the skills and tools needed to successfully develop advanced analytics capabilities.

Dark Data - Why What You Don't Know Matters (Paperback): David J. Hand Dark Data - Why What You Don't Know Matters (Paperback)
David J. Hand
R462 Discovery Miles 4 620 Ships in 18 - 22 working days

A practical guide to making good decisions in a world of missing data In the era of big data, it is easy to imagine that we have all the information we need to make good decisions. But in fact the data we have are never complete, and may be only the tip of the iceberg. Just as much of the universe is composed of dark matter, invisible to us but nonetheless present, the universe of information is full of dark data that we overlook at our peril. In Dark Data, data expert David Hand takes us on a fascinating and enlightening journey into the world of the data we don't see. Dark Data explores the many ways in which we can be blind to missing data and how that can lead us to conclusions and actions that are mistaken, dangerous, or even disastrous. Examining a wealth of real-life examples, from the Challenger shuttle explosion to complex financial frauds, Hand gives us a practical taxonomy of the types of dark data that exist and the situations in which they can arise, so that we can learn to recognize and control for them. In doing so, he teaches us not only to be alert to the problems presented by the things we don't know, but also shows how dark data can be used to our advantage, leading to greater understanding and better decisions. Today, we all make decisions using data. Dark Data shows us all how to reduce the risk of making bad ones.

Spectral Feature Selection for Data Mining (Hardcover, New): Zheng Alan Zhao, Huan Liu Spectral Feature Selection for Data Mining (Hardcover, New)
Zheng Alan Zhao, Huan Liu
R5,767 Discovery Miles 57 670 Ships in 10 - 15 working days

Spectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervised feature selection. The book explores the latest research achievements, sheds light on new research directions, and stimulates readers to make the next creative breakthroughs. It presents the intrinsic ideas behind spectral feature selection, its theoretical foundations, its connections to other algorithms, and its use in handling both large-scale data sets and small sample problems. The authors also cover feature selection and feature extraction, including basic concepts, popular existing algorithms, and applications. A timely introduction to spectral feature selection, this book illustrates the potential of this powerful dimensionality reduction technique in high-dimensional data processing. Readers learn how to use spectral feature selection to solve challenging problems in real-life applications and discover how general feature selection and extraction are connected to spectral feature selection.

Data structures based on linear relations (Paperback): Xingni Zhou, Zhiyuan Ren, Yanzhuo Ma, Kai Fan, Xiang Ji Data structures based on linear relations (Paperback)
Xingni Zhou, Zhiyuan Ren, Yanzhuo Ma, Kai Fan, Xiang Ji
R904 Discovery Miles 9 040 Ships in 10 - 15 working days

Data structures is a key course for computer science and related majors. This book presents a variety of practical or engineering cases and derives abstract concepts from concrete problems. Besides basic concepts and analysis methods, it introduces basic data types such as sequential list, tree as well as graph. This book can be used as an undergraduate textbook, as a training textbook or a self-study textbook for engineers.

Recent Progress in Data Engineering and Internet Technology - Volume 1 (Hardcover, 2013 ed.): Ford Lumban Gaol Recent Progress in Data Engineering and Internet Technology - Volume 1 (Hardcover, 2013 ed.)
Ford Lumban Gaol
R5,233 Discovery Miles 52 330 Ships in 18 - 22 working days

The latest inventions in internet technology influence most of business and daily activities. Internet security, internet data management, web search, data grids, cloud computing, and web-based applications play vital roles, especially in business and industry, as more transactions go online and mobile. Issues related to ubiquitous computing are becoming critical. Internet technology and data engineering should reinforce efficiency and effectiveness of business processes. These technologies should help people make better and more accurate decisions by presenting necessary information and possible consequences for the decisions. Intelligent information systems should help us better understand and manage information with ubiquitous data repository and cloud computing. This book is a compilation of some recent research findings in Internet Technology and Data Engineering. This book provides state-of-the-art accounts in computational algorithms/tools, database management and database technologies, intelligent information systems, data engineering applications, internet security, internet data management, web search, data grids, cloud computing, web-based application, and other related topics.

Clinical Text Mining - Secondary Use of Electronic Patient Records (Hardcover, 1st ed. 2018): Hercules Dalianis Clinical Text Mining - Secondary Use of Electronic Patient Records (Hardcover, 1st ed. 2018)
Hercules Dalianis
R1,524 Discovery Miles 15 240 Ships in 18 - 22 working days

This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book's closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.

Introduction to Bio-Ontologies (Hardcover, New): Peter N Robinson, Sebastian Bauer Introduction to Bio-Ontologies (Hardcover, New)
Peter N Robinson, Sebastian Bauer
R3,125 Discovery Miles 31 250 Ships in 10 - 15 working days

Introduction to Bio-Ontologies explores the computational background of ontologies. Emphasizing computational and algorithmic issues surrounding bio-ontologies, this self-contained text helps readers understand ontological algorithms and their applications.

The first part of the book defines ontology and bio-ontologies. It also explains the importance of mathematical logic for understanding concepts of inference in bio-ontologies, discusses the probability and statistics topics necessary for understanding ontology algorithms, and describes ontology languages, including OBO (the preeminent language for bio-ontologies), RDF, RDFS, and OWL.

The second part covers significant bio-ontologies and their applications. The book presents the Gene Ontology; upper-level ontologies, such as the Basic Formal Ontology and the Relation Ontology; and current bio-ontologies, including several anatomy ontologies, Chemical Entities of Biological Interest, Sequence Ontology, Mammalian Phenotype Ontology, and Human Phenotype Ontology.

The third part of the text introduces the major graph-based algorithms for bio-ontologies. The authors discuss how these algorithms are used in overrepresentation analysis, model-based procedures, semantic similarity analysis, and Bayesian networks for molecular biology and biomedical applications.

With a focus on computational reasoning topics, the final part describes the ontology languages of the Semantic Web and their applications for inference. It covers the formal semantics of RDF and RDFS, OWL inference rules, a key inference algorithm, the SPARQL query language, and the state of the art for querying OWL ontologies.

Web Resource
Software and data designed to complement material in the text are available on the book s website: http: //bio-ontologies-book.org The site provides the R Robo package developed for the book, along with a compressed archive of data and ontology files used in some of the exercises. It also offers teaching/presentation slides and links to other relevant websites.

This book provides readers with the foundation to use ontologies as a starting point for new bioinformatics research projects or to support current molecular genetics research projects. By supplying a self-contained introduction to OBO ontologies and the Semantic Web, it bridges the gap between both fields and helps readers see what each can contribute to the analysis and understanding of biomedical data.

Ciencia de Datos para Empresas - Modelo Predictivo, Mineria de Datos, Analisis de Datos, Analisis de Regresion, Consulta de... Ciencia de Datos para Empresas - Modelo Predictivo, Mineria de Datos, Analisis de Datos, Analisis de Regresion, Consulta de Bases de Datos y Aprendizaje Automatico para Principiantes (Spanish Edition) (Spanish, Hardcover)
Herbert Jones
R654 R583 Discovery Miles 5 830 Save R71 (11%) Ships in 18 - 22 working days
Music Emotion Recognition (Hardcover): Yi-Hsuan Yang, Homer H. Chen Music Emotion Recognition (Hardcover)
Yi-Hsuan Yang, Homer H. Chen
R2,809 Discovery Miles 28 090 Ships in 10 - 15 working days

Providing a complete review of existing work in music emotion developed in psychology and engineering, Music Emotion Recognition explains how to account for the subjective nature of emotion perception in the development of automatic music emotion recognition (MER) systems. Among the first publications dedicated to automatic MER, it begins with a comprehensive introduction to the essential aspects of MER-including background, key techniques, and applications. This ground-breaking reference examines emotion from a dimensional perspective. It defines emotions in music as points in a 2D plane in terms of two of the most fundamental emotion dimensions according to psychologists-valence and arousal. The authors present a computational framework that generalizes emotion recognition from the categorical domain to real-valued 2D space. They also: Introduce novel emotion-based music retrieval and organization methods Describe a ranking-base emotion annotation and model training method Present methods that integrate information extracted from lyrics, chord sequence, and genre metadata for improved accuracy Consider an emotion-based music retrieval system that is particularly useful for mobile devices The book details techniques for addressing the issues related to: the ambiguity and granularity of emotion description, heavy cognitive load of emotion annotation, subjectivity of emotion perception, and the semantic gap between low-level audio signal and high-level emotion perception. Complete with more than 360 useful references, 12 example MATLAB (R) codes, and a listing of key abbreviations and acronyms, this cutting-edge guide supplies the technical understanding and tools needed to develop your own automatic MER system based on the automatic recognition model.

Data Mining for Biomarker Discovery (Hardcover, 2012 ed.): Panos M. Pardalos, Petros Xanthopoulos, Michalis Zervakis Data Mining for Biomarker Discovery (Hardcover, 2012 ed.)
Panos M. Pardalos, Petros Xanthopoulos, Michalis Zervakis
R2,672 Discovery Miles 26 720 Ships in 18 - 22 working days

Biomarker discovery is an important area of biomedical research that may lead to significant breakthroughs in disease analysis and targeted therapy. Biomarkers are biological entities whose alterations are measurable and are characteristic of a particular biological condition. Discovering, managing, and interpreting knowledge of new biomarkers are challenging and attractive problems in the emerging field of biomedical informatics. This volume is a collection of state-of-the-art research into the application of data mining to the discovery and analysis of new biomarkers. Presenting new results, models and algorithms, the included contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques. This volume is intended for students, and researchers in bioinformatics, proteomics, and genomics, as well engineers and applied scientists interested in the interdisciplinary application of data mining techniques.

Map Construction Algorithms (Hardcover, 1st ed. 2015): Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, Carola Wenk Map Construction Algorithms (Hardcover, 1st ed. 2015)
Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, Carola Wenk
R2,404 R1,773 Discovery Miles 17 730 Save R631 (26%) Ships in 10 - 15 working days

The book provides an overview of the state-of-the-art of map construction algorithms, which use tracking data in the form of trajectories to generate vector maps. The most common trajectory type is GPS-based trajectories. It introduces three emerging algorithmic categories, outlines their general algorithmic ideas, and discusses three representative algorithms in greater detail. To quantify map construction algorithms, the authors include specific datasets and evaluation measures. The datasets, source code of map construction algorithms and evaluation measures are publicly available on http://www.mapconstruction.org. The web site serves as a repository for map construction data and algorithms and researchers can contribute by uploading their own code and benchmark data. Map Construction Algorithms is an excellent resource for professionals working in computational geometry, spatial databases, and GIS. Advanced-level students studying computer science, geography and mathematics will also find this book a useful tool.

Intelligent Information Processing V - 6th IFIP TC 12 International Conference, IIP 2010, Manchester, UK, October 13-16, 2010,... Intelligent Information Processing V - 6th IFIP TC 12 International Conference, IIP 2010, Manchester, UK, October 13-16, 2010, Proceedings (Hardcover, Edition.)
Zhongzhi Shi, Sunil Vadera, Agnar Aamodt, David Leake
R1,454 Discovery Miles 14 540 Ships in 18 - 22 working days

This volume comprises the 6th IFIP International Conference on Intelligent Infor- tion Processing. As the world proceeds quickly into the Information Age, it encounters both successes and challenges, and it is well recognized nowadays that intelligent information processing provides the key to the Information Age and to mastering many of these challenges. Intelligent information processing supports the most - vanced productive tools that are said to be able to change human life and the world itself. However, the path is never a straight one and every new technology brings with it a spate of new research problems to be tackled by researchers; as a result we are not running out of topics; rather the demand is ever increasing. This conference provides a forum for engineers and scientists in academia and industry to present their latest research findings in all aspects of intelligent information processing. This is the 6th IFIP International Conference on Intelligent Information Processing. We received more than 50 papers, of which 35 papers are included in this program as regular papers and 4 as short papers. We are grateful for the dedicated work of both the authors and the referees, and we hope these proceedings will continue to bear fruit over the years to come. All papers submitted were reviewed by two referees. A conference such as this cannot succeed without help from many individuals who contributed their valuable time and expertise.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Handbook of Mobility Data Mining, Volume…
Haoran Zhang Paperback R2,473 Discovery Miles 24 730
Transforming Businesses With Bitcoin…
Dharmendra Singh Rajput, Ramjeevan Singh Thakur, … Hardcover R5,938 Discovery Miles 59 380
Interactive Reports in SAS(R) Visual…
Nicole Ball Hardcover R1,715 Discovery Miles 17 150
Data Mining
Ciza Thomas Hardcover R3,081 Discovery Miles 30 810
The Numbers Behind Success in Soccer…
Chest Dugger Hardcover R840 Discovery Miles 8 400
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, … Hardcover R1,961 R1,830 Discovery Miles 18 300
Co-Clustering
G Govaert Hardcover R3,767 Discovery Miles 37 670
Temporal Data Mining via Unsupervised…
Yun Yang Paperback R1,173 Discovery Miles 11 730
The Data and Analytics Playbook - Proven…
Lowell Fryman, Gregory Lampshire, … Paperback R1,200 Discovery Miles 12 000
Consumer Behavior Change and Data…
Pantea Keikhosrokiani Hardcover R7,723 Discovery Miles 77 230

 

Partners