![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.
There is an ongoing data explosion transpiring that will make previous creations, collections, and storage of data look trivial. Big Data, Mining, and Analytics: Components of Strategic Decision Making ties together big data, data mining, and analytics to explain how readers can leverage them to extract valuable insights from their data. Facilitating a clear understanding of big data, it supplies authoritative insights from expert contributors into leveraging data resources, including big data, to improve decision making. Illustrating basic approaches of business intelligence to the more complex methods of data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining. Includes a foreword by Thomas H. Davenport, Distinguished Professor, Babson College; Fellow, MIT Center for Digital Business; and Co-Founder, International Institute for Analytics Introduces text mining and the transforming of unstructured data into useful information Examines real time wireless medical data acquisition for today's healthcare and data mining challenges Presents the contributions of big data experts from academia and industry, including SAS Highlights the most exciting emerging technologies for big data Filled with examples that illustrate the value of analytics throughout, the book outlines a conceptual framework for data modeling that can help you immediately improve your own analytics and decision-making processes. It also provides in-depth coverage of analyzing unstructured data with text mining methods.
This book focuses on mobile data and its applications in the wireless networks of the future. Several topics form the basis of discussion, from a mobile data mining platform for collecting mobile data, to mobile data processing, and mobile feature discovery. Usage of mobile data mining is addressed in the context of three applications: wireless communication optimization, applications of mobile data mining on the cellular networks of the future, and how mobile data shapes future cities. In the discussion of wireless communication optimization, both licensed and unlicensed spectra are exploited. Advanced topics include mobile offloading, resource sharing, user association, network selection and network coexistence. Mathematical tools, such as traditional convexappl/non-convex, stochastic processing and game theory are used to find objective solutions. Discussion of the applications of mobile data mining to cellular networks of the future includes topics such as green communication networks, 5G networks, and studies of the problems of cell zooming, power control, sleep/wake, and energy saving. The discussion of mobile data mining in the context of smart cities of the future covers applications in urban planning and environmental monitoring: the technologies of deep learning, neural networks, complex networks, and network embedded data mining. Mobile Data Mining and Applications will be of interest to wireless operators, companies, governments as well as interested end users.
Manage and Automate Data Analysis with Pandas in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets. Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set. New features to the second edition include: Extended coverage of plotting and the seaborn data visualization library Expanded examples and resources Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries Online bonus material on geopandas, Dask, and creating interactive graphics with Altair Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine data sets and handle missing data Reshape, tidy, and clean data sets so they're easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large data sets with groupby Leverage Pandas' advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the "best" one Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications. Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological developments, theoretical properties, computational aspects, and applications of many multi-label dimensionality reduction algorithms. It explores numerous research questions, including: How to fully exploit label correlations for effective dimensionality reduction How to scale dimensionality reduction algorithms to large-scale problems How to effectively combine dimensionality reduction with classification How to derive sparse dimensionality reduction algorithms to enhance model interpretability How to perform multi-label dimensionality reduction effectively in practical applications The authors emphasize their extensive work on dimensionality reduction for multi-label learning. Using a case study of Drosophila gene expression pattern image annotation, they demonstrate how to apply multi-label dimensionality reduction algorithms to solve real-world problems. A supplementary website provides a MATLAB (R) package for implementing popular dimensionality reduction algorithms.
With today's consumers spending more time on their mobiles than on their PCs, new methods of empirical stochastic modeling have emerged that can provide marketers with detailed information about the products, content, and services their customers desire. Data Mining Mobile Devices defines the collection of machine-sensed environmental data pertaining to human social behavior. It explains how the integration of data mining and machine learning can enable the modeling of conversation context, proximity sensing, and geospatial location throughout large communities of mobile users. Examines the construction and leveraging of mobile sites Describes how to use mobile apps to gather key data about consumers' behavior and preferences Discusses mobile mobs, which can be differentiated as distinct marketplaces-including Apple (R), Google (R), Facebook (R), Amazon (R), and Twitter (R) Provides detailed coverage of mobile analytics via clustering, text, and classification AI software and techniques Mobile devices serve as detailed diaries of a person, continuously and intimately broadcasting where, how, when, and what products, services, and content your consumers desire. The future is mobile-data mining starts and stops in consumers' pockets. Describing how to analyze Wi-Fi and GPS data from websites and apps, the book explains how to model mined data through the use of artificial intelligence software. It also discusses the monetization of mobile devices' desires and preferences that can lead to the triangulated marketing of content, products, or services to billions of consumers-in a relevant, anonymous, and personal manner.
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You'll explore the basic operations and common functions of Spark's structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark's scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets-Spark's core APIs-through worked examples Dive into Spark's low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark's stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods K-Means for partitioning and Ward's method for hierarchical clustering have lacked the theoretical underpinning required to establish a firm relationship between the two methods and relevant interpretation aids. Other approaches, such as spectral clustering or consensus clustering, are considered absolutely unrelated to each other or to the two above mentioned methods. Clustering: A Data Recovery Approach, Second Edition presents a unified modeling approach for the most popular clustering methods: the K-Means and hierarchical techniques, especially for divisive clustering. It significantly expands coverage of the mathematics of data recovery, and includes a new chapter covering more recent popular network clustering approaches spectral, modularity and uniform, additive, and consensus treated within the same data recovery approach. Another added chapter covers cluster validation and interpretation, including recent developments for ontology-driven interpretation of clusters. Altogether, the insertions added a hundred pages to the book, even in spite of the fact that fragments unrelated to the main topics were removed. Illustrated using a set of small real-world datasets and more than a hundred examples, the book is oriented towards students, practitioners, and theoreticians of cluster analysis. Covering topics that are beyond the scope of most texts, the author s explanations of data recovery methods, theory-based advice, pre- and post-processing issues and his clear, practical instructions for real-world data mining make this book ideally suited for teaching, self-study, and professional reference.
"This text should be required reading for everyone in contemporary business." --Peter Woodhull, CEO, Modus21 "The one book that clearly describes and links Big Data concepts to business utility." --Dr. Christopher Starr, PhD "Simply, this is the best Big Data book on the market!" --Sam Rostam, Cascadian IT Group "...one of the most contemporary approaches I've seen to Big Data fundamentals..." --Joshua M. Davis, PhD The Definitive Plain-English Guide to Big Data for Business and Technology Professionals Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams. The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages. Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation Planning strategic, business-driven Big Data initiatives Addressing considerations such as data management, governance, and security Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts Working with Big Data in structured, unstructured, semi-structured, and metadata formats Increasing value by integrating Big Data resources with corporate performance monitoring Understanding how Big Data leverages distributed and parallel processing Using NoSQL and other technologies to meet Big Data's distinct data processing requirements Leveraging statistical approaches of quantitative and qualitative analysis Applying computational analysis methods, including machine learning
This volume deals with two complementary topics. On one hand the book deals with the problem of determining the the probability distribution of a positive compound random variable, a problem which appears in the banking and insurance industries, in many areas of operational research and in reliability problems in the engineering sciences. On the other hand, the methodology proposed to solve such problems, which is based on an application of the maximum entropy method to invert the Laplace transform of the distributions, can be applied to many other problems. The book contains applications to a large variety of problems, including the problem of dependence of the sample data used to estimate empirically the Laplace transform of the random variable. Contents Introduction Frequency models Individual severity models Some detailed examples Some traditional approaches to the aggregation problem Laplace transforms and fractional moment problems The standard maximum entropy method Extensions of the method of maximum entropy Superresolution in maxentropic Laplace transform inversion Sample data dependence Disentangling frequencies and decompounding losses Computations using the maxentropic density Review of statistical procedures
Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the text is ideal for students in customer and business analytics or applied data mining as well as professionals in small- to medium-sized organizations. The book offers an intuitive understanding of how different analytics algorithms work. Where necessary, the authors explain the underlying mathematics in an accessible manner. Each technique presented includes a detailed tutorial that enables hands-on experience with real data. The authors also discuss issues often encountered in applied data mining projects and present the CRISP-DM process model as a practical framework for organizing these projects. Showing how data mining can improve the performance of organizations, this book and its R-based software provide the skills and tools needed to successfully develop advanced analytics capabilities.
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
"Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception"" "covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions. The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
Machine Learning and Knowledge Discovery for Engineering Systems Health Management presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. With contributions from many top authorities on the subject, this volume is the first to bring together the two areas of machine learning and systems health management. Divided into three parts, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management. The first part of the text describes data-driven methods for anomaly detection, diagnosis, and prognosis of massive data streams and associated performance metrics. It also illustrates the analysis of text reports using novel machine learning approaches that help detect and discriminate between failure modes. The second part focuses on physics-based methods for diagnostics and prognostics, exploring how these methods adapt to observed data. It covers physics-based, data-driven, and hybrid approaches to studying damage propagation and prognostics in composite materials and solid rocket motors. The third part discusses the use of machine learning and physics-based approaches in distributed data centers, aircraft engines, and embedded real-time software systems. Reflecting the interdisciplinary nature of the field, this book shows how various machine learning and knowledge discovery techniques are used in the analysis of complex engineering systems. It emphasizes the importance of these techniques in managing the intricate interactions within and between the systems to maintain a high degree of reliability.
Spectral Feature Selection for Data Mining introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications. This technique represents a unified framework for supervised, unsupervised, and semisupervised feature selection. The book explores the latest research achievements, sheds light on new research directions, and stimulates readers to make the next creative breakthroughs. It presents the intrinsic ideas behind spectral feature selection, its theoretical foundations, its connections to other algorithms, and its use in handling both large-scale data sets and small sample problems. The authors also cover feature selection and feature extraction, including basic concepts, popular existing algorithms, and applications. A timely introduction to spectral feature selection, this book illustrates the potential of this powerful dimensionality reduction technique in high-dimensional data processing. Readers learn how to use spectral feature selection to solve challenging problems in real-life applications and discover how general feature selection and extraction are connected to spectral feature selection.
Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques.Starts from basic principles up to advanced concepts.Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software.Gives practical tips for data mining implementation to solve real world problems.Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring.Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
Introduction to Bio-Ontologies explores the computational background of ontologies. Emphasizing computational and algorithmic issues surrounding bio-ontologies, this self-contained text helps readers understand ontological algorithms and their applications. The first part of the book defines ontology and bio-ontologies. It also explains the importance of mathematical logic for understanding concepts of inference in bio-ontologies, discusses the probability and statistics topics necessary for understanding ontology algorithms, and describes ontology languages, including OBO (the preeminent language for bio-ontologies), RDF, RDFS, and OWL. The second part covers significant bio-ontologies and their applications. The book presents the Gene Ontology; upper-level ontologies, such as the Basic Formal Ontology and the Relation Ontology; and current bio-ontologies, including several anatomy ontologies, Chemical Entities of Biological Interest, Sequence Ontology, Mammalian Phenotype Ontology, and Human Phenotype Ontology. The third part of the text introduces the major graph-based algorithms for bio-ontologies. The authors discuss how these algorithms are used in overrepresentation analysis, model-based procedures, semantic similarity analysis, and Bayesian networks for molecular biology and biomedical applications. With a focus on computational reasoning topics, the final part describes the ontology languages of the Semantic Web and their applications for inference. It covers the formal semantics of RDF and RDFS, OWL inference rules, a key inference algorithm, the SPARQL query language, and the state of the art for querying OWL ontologies. Web Resource This book provides readers with the foundation to use ontologies as a starting point for new bioinformatics research projects or to support current molecular genetics research projects. By supplying a self-contained introduction to OBO ontologies and the Semantic Web, it bridges the gap between both fields and helps readers see what each can contribute to the analysis and understanding of biomedical data.
This proceedings volume gathers together selected peer-reviewed papers presented at the second edition of the XXVI International Joint Conference on Industrial Engineering and Operations Management (IJCIEOM), which was virtually held on February 22-24, 2021 with the main organization based at the Pontifical Catholic University of Rio de Janeiro, Brazil. Works cover a range of topics in industrial engineering, including operations and process management, global operations, managerial economics, data science and stochastic optimization, logistics and supply chain management, quality management, product development, strategy and organizational engineering, knowledge and information management, sustainability, and disaster management, to name a few. These topics broadly involve fields like operations, manufacturing, industrial and production engineering, and management. This book can be a valuable resource for researchers and practitioners in optimization research, operations research, and correlated fields.
Providing a complete review of existing work in music emotion developed in psychology and engineering, Music Emotion Recognition explains how to account for the subjective nature of emotion perception in the development of automatic music emotion recognition (MER) systems. Among the first publications dedicated to automatic MER, it begins with a comprehensive introduction to the essential aspects of MER-including background, key techniques, and applications. This ground-breaking reference examines emotion from a dimensional perspective. It defines emotions in music as points in a 2D plane in terms of two of the most fundamental emotion dimensions according to psychologists-valence and arousal. The authors present a computational framework that generalizes emotion recognition from the categorical domain to real-valued 2D space. They also: Introduce novel emotion-based music retrieval and organization methods Describe a ranking-base emotion annotation and model training method Present methods that integrate information extracted from lyrics, chord sequence, and genre metadata for improved accuracy Consider an emotion-based music retrieval system that is particularly useful for mobile devices The book details techniques for addressing the issues related to: the ambiguity and granularity of emotion description, heavy cognitive load of emotion annotation, subjectivity of emotion perception, and the semantic gap between low-level audio signal and high-level emotion perception. Complete with more than 360 useful references, 12 example MATLAB (R) codes, and a listing of key abbreviations and acronyms, this cutting-edge guide supplies the technical understanding and tools needed to develop your own automatic MER system based on the automatic recognition model.
Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 2 of this three volume series, we have brought together contributions from some of the most prestigious researchers in theoretical data mining. Each of the chapters is self contained. Statisticians and applied scientists/ engineers will find this volume valuable. Additionally, it provides a sourcebook for graduate students interested in the current direction of research in data mining.
Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining. This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.
This volume comprises the 6th IFIP International Conference on Intelligent Infor- tion Processing. As the world proceeds quickly into the Information Age, it encounters both successes and challenges, and it is well recognized nowadays that intelligent information processing provides the key to the Information Age and to mastering many of these challenges. Intelligent information processing supports the most - vanced productive tools that are said to be able to change human life and the world itself. However, the path is never a straight one and every new technology brings with it a spate of new research problems to be tackled by researchers; as a result we are not running out of topics; rather the demand is ever increasing. This conference provides a forum for engineers and scientists in academia and industry to present their latest research findings in all aspects of intelligent information processing. This is the 6th IFIP International Conference on Intelligent Information Processing. We received more than 50 papers, of which 35 papers are included in this program as regular papers and 4 as short papers. We are grateful for the dedicated work of both the authors and the referees, and we hope these proceedings will continue to bear fruit over the years to come. All papers submitted were reviewed by two referees. A conference such as this cannot succeed without help from many individuals who contributed their valuable time and expertise. |
![]() ![]() You may like...
Evolutionary and Deterministic Methods…
Esther Andres Perez, Leo M. Gonzalez, …
Hardcover
R4,684
Discovery Miles 46 840
Recent Trends in Communication and…
Aditya Kumar Singh Pundir, Anupam Yadav, …
Hardcover
R5,882
Discovery Miles 58 820
Project Management For Engineering…
John M. Nicholas, Herman Steyn
Paperback
R555
Discovery Miles 5 550
Disaster Risk Reduction in Mexico…
Diana Sanchez-Partida, Jose-Luis Martinez-Flores, …
Hardcover
R1,659
Discovery Miles 16 590
Advanced Introduction to Artificial…
Tom Davenport, John Glaser, …
Hardcover
R2,951
Discovery Miles 29 510
Multi-point Interaction with Real and…
Federico Barbagli, Domenico Prattichizzo, …
Hardcover
R3,200
Discovery Miles 32 000
Managing Supply Chain Risk and…
Aravind Raj Sakthivel, Jayakrishna Kandasamy, …
Hardcover
R3,966
Discovery Miles 39 660
|