![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
This book highlights an innovative approach for extracting terminological cores from subject domain-bounded collections of professional texts. The approach is based on exploiting the phenomenon of terminological saturation. The book presents the formal framework for the method of detecting and measuring terminological saturation as a successive approximation process. It further offers the suite of the algorithms that implement the method in the software and comprehensively evaluates all the aspects of the method and possible input configurations in the experiments on synthetic and real collections of texts in several subject domains. The book demonstrates the use of the developed method and software pipeline in industrial and academic use cases. It also outlines the potential benefits of the method for the adoption in industry.
Lying at the intersection of education, art, and cultural heritage, visualization is a powerful tool for representing and interpreting complex information. This unique text/reference reviews the evolution of the field of visualization, providing innovative examples of applied knowledge visualization from disciplines as varied as law, business management, the arts and humanities. With coverage of theoretical and practical aspects of visualization from ancient Sumerian tablets through to twenty-first century legal contracts, this work underscores the important role that the process of visualization plays in extracting, organizing, and crystallizing the concepts found in complex data. Topics and features: contains contributions from an international selection of preeminent authorities; presents a thorough introduction to the discipline of knowledge visualization, its current state of affairs and possible future developments; examines how tables have been used for information visualization in historical textual documents; discusses the application of visualization techniques for knowledge transfer in business relationships, and for the linguistic exploration and analysis of sensory descriptions; investigates the use of visualization to understand orchestral music scores, the optical theory behind Renaissance art, and to assist in the reconstruction of an historic church; describes immersive 360 degree stereographic visualization, knowledge-embedded embodied interaction, and a novel methodology for the analysis of architectural forms. This interdisciplinary collection of the state of the art in knowledge visualization will be of considerable interest to researchers from a broad spectrum of backgrounds in both industry and academia.
There is often a large number of association rules discovered in data mining practice, making it difficult for users to identify those that are of particular interest to them. Therefore, it is important to remove insignificant rules and prune redundancy as well as summarize, visualize, and post-mine the discovered rules. Post-Mining of Association Rules: Techniques for Effective Knowledge Extraction provides a systematic collection on post-mining, summarization and presentation of association rules, and new forms of association rules. This book presents researchers, practitioners, and academicians with tools to extract useful and actionable knowledge after discovering a large number of association rules.
This book addresses the problems that are encountered, and solutions that have been proposed, when we aim to identify people and to reconstruct populations under conditions where information is scarce, ambiguous, fuzzy and sometimes erroneous. The process from handwritten registers to a reconstructed digitized population consists of three major phases, reflected in the three main sections of this book. The first phase involves transcribing and digitizing the data while structuring the information in a meaningful and efficient way. In the second phase, records that refer to the same person or group of persons are identified by a process of linkage. In the third and final phase, the information on an individual is combined into a reconstruction of their life course. The studies and examples in this book originate from a range of countries, each with its own cultural and administrative characteristics, and from medieval charters through historical censuses and vital registration, to the modern issue of privacy preservation. Despite the diverse places and times addressed, they all share the study of fundamental issues when it comes to model reasoning for population reconstruction and the possibilities and limitations of information technology to support this process. It is thus not a single discipline that is involved in such an endeavor. Historians, social scientists, and linguists represent the humanities through their knowledge of the complexity of the past, the limitations of sources, and the possible interpretations of information. The availability of big data from digitized archives and the need for complex analyses to identify individuals calls for the involvement of computer scientists. With contributions from all these fields, often in direct cooperation, this book is at the heart of the digital humanities, and will hopefully offer a source of inspiration for future investigations.
This book contains the proceedings as well as invited papers for the first annual conference of the UNESCO Unitwin Complex System Digital Campus (CSDC), which is an international initiative gathering 120 Universities on four continents, and structured in ten E-Departments. First Complex Systems Digital Campus World E-Conference 2015 features chapters from the latest research results on theoretical questions of complex systems and their experimental domains. The content contained bridges the gap between the individual and the collective within complex systems science and new integrative sciences on topics such as: genes to organisms to ecosystems, atoms to materials to products, and digital media to the Internet. The conference breaks new ground through a dedicated video-conferencing system - a concept at the heart of the international UNESCO UniTwin, embracing scientists from low-income and distant countries. This book promotes an integrated system of research, education, and training. It also aims at contributing to global development by taking into account its social, economic, and cultural dimensions. First Complex Systems Digital Campus World E-Conference 2015 will appeal to students and researchers working in the fields of complex systems, statistical physics, computational intelligence, and biological physics.
"Reliable Knowledge Discovery" focuses on theory, methods, and techniques for RKDD, a new sub-field of KDD. It studies the theory and methods to assure the reliability and trustworthiness of discovered knowledge and to maintain the stability and consistency of knowledge discovery processes. RKDD has a broad spectrum of applications, especially in critical domains like medicine, finance, and military. "Reliable Knowledge Discovery" also presents methods and techniques for designing robust knowledge-discovery processes. Approaches to assessing the reliability of the discovered knowledge are introduced. Particular attention is paid to methods for reliable feature selection, reliable graph discovery, reliable classification, and stream mining. Estimating the data trustworthiness is covered in this volume as well. Case studies are provided in many chapters. "Reliable Knowledge Discovery" is designed for researchers and advanced-level students focused on computer science and electrical engineering as a secondary text or reference. Professionals working in this related field and KDD application developers will also find this book useful.
The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration. The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it. In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization.
This book approaches big data, artificial intelligence, machine learning, and business intelligence through the lens of Data Science. We have grown accustomed to seeing these terms mentioned time and time again in the mainstream media. However, our understanding of what they actually mean often remains limited. This book provides a general overview of the terms and approaches used broadly in data science, and provides detailed information on the underlying theories, models, and application scenarios. Divided into three main parts, it addresses what data science is; how and where it is used; and how it can be implemented using modern open source software. The book offers an essential guide to modern data science for all students, practitioners, developers and managers seeking a deeper understanding of how various aspects of data science work, and of how they can be employed to gain a competitive advantage.
BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.
Easy-to-follow step-by-step concepts and methods. Every chapter is introduced in a very gentle and intuitive way so students can understand the WHYs, WHAT-IFs, WHAT-IS-THIS-FORs, HOWs, etc by themselves. Practical programming exercises in Python for each chapter. Includes theory and practice for every chapter, summaries, practical coding exercises for target problems, QA, and a companion website with the sample code and data.
Data is powerful. It separates leaders from laggards and it drives business disruption, transformation, and reinvention. Today's most progressive companies are using the power of data to propel their industries into new areas of innovation, specialization, and optimization. The horsepower of new tools and technologies have provided more opportunities than ever to harness, integrate, and interact with massive amounts of disparate data for business insights and value - something that will only continue in the era of the Internet of Things. And, as a new breed of tech-savvy and digitally native knowledge workers rise to the ranks of data scientist and visual analyst, the needs and demands of the people working with data are changing, too. The world of data is changing fast. And, it's becoming more visual. Visual insights are becoming increasingly dominant in information management, and with the reinvigorated role of data visualization, this imperative is a driving force to creating a visual culture of data discovery. The traditional standards of data visualizations are making way for richer, more robust and more advanced visualizations and new ways of seeing and interacting with data. However, while data visualization is a critical tool to exploring and understanding bigger and more diverse and dynamic data, by understanding and embracing our human hardwiring for visual communication and storytelling and properly incorporating key design principles and evolving best practices, we take the next step forward to transform data visualizations from tools into unique visual information assets.
The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.
Easy-to-follow step-by-step concepts and methods. Every chapter is introduced in a very gentle and intuitive way so students can understand the WHYs, WHAT-IFs, WHAT-IS-THIS-FORs, HOWs, etc by themselves. Practical programming exercises in Python for each chapter. Includes theory and practice for every chapter, summaries, practical coding exercises for target problems, QA, and a companion website with the sample code and data.
Data science and machine learning-two of the world's hottest fields-are attracting talent from a wide variety of technical, business, and liberal arts disciplines. Python, the world's #1 programming language, is also the most popular language for data science and machine learning. This is the first guide specifically designed to help millions of people with widely diverse backgrounds learn Python so they can use it for data science and machine learning. Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once you've learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving. Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more-all created with Colab (Jupyter compatible) notebooks, so you can execute all coding examples interactively without installing or configuring any software.
The concept of digital risk, which has become ubiquitous in the media, sustains a number of myths and beliefs about the digital world. This book explores the opposite view of these ideologies by focusing on digital risks as perceived by actors in their respective contexts. Perceptions and Analysis of Digital Risks identifies the different types of risks that concern actors and actually impact their daily lives, within education or various socio-professional environments. It provides an analysis of the strategies used by the latter to deal with these risks as they conduct their activities; thus making it possible to characterize the digital cultures and, more broadly, the informational cultures at work. This book offers many avenues for action in terms of educating the younger generations, training teachers and leaders, and mediating risks.
Data Analysis in the Cloud introduces and discusses models, methods, techniques, and systems to analyze the large number of digital data sources available on the Internet using the computing and storage facilities of the cloud. Coverage includes scalable data mining and knowledge discovery techniques together with cloud computing concepts, models, and systems. Specific sections focus on map-reduce and NoSQL models. The book also includes techniques for conducting high-performance distributed analysis of large data on clouds. Finally, the book examines research trends such as Big Data pervasive computing, data-intensive exascale computing, and massive social network analysis.
This book covers key issues related to Geospatial Semantic Web, including geospatial web services for spatial data interoperability; geospatial ontology for semantic interoperability; ontology creation, sharing, and integration; querying knowledge and information from heterogeneous data source; interfaces for Geospatial Semantic Web, VGI (Volunteered Geographic Information) and Geospatial Semantic Web; challenges of Geospatial Semantic Web; and development of Geospatial Semantic Web applications. This book also describes state-of-the-art technologies that attempt to solve these problems such as WFS, WMS, RDF, OWL and GeoSPARQL and demonstrates how to use the Geospatial Semantic Web technologies to solve practical real-world problems such as spatial data interoperability.
This book explains the Linked Data domain by adopting a bottom-up approach: it introduces the fundamental Semantic Web technologies and building blocks, which are then combined into methodologies and end-to-end examples for publishing datasets as Linked Data, and use cases that harness scholarly information and sensor data. It presents how Linked Data is used for web-scale data integration, information management and search. Special emphasis is given to the publication of Linked Data from relational databases as well as from real-time sensor data streams. The authors also trace the transformation from the document-based World Wide Web into a Web of Data. Materializing the Web of Linked Data is addressed to researchers and professionals studying software technologies, tools and approaches that drive the Linked Data ecosystem, and the Web in general.
Data Mining for Bioinformatics Applications provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems, including problem definition, data collection, data preprocessing, modeling, and validation. The text uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems, containing 45 bioinformatics problems that have been investigated in recent research. For each example, the entire data mining process is described, ranging from data preprocessing to modeling and result validation.
1) Discusses technical details of the Machine Learning tools and techniques in the different types of cancers 2) Machine learning and data mining in healthcare is a very important topic and hence there would be a demand for such a book 3) As compared to other titles, the proposed book focuses on different types of cancer disease and their prediction strategy using machine leaning and data mining.
This textbook brings together both new and traditional research methods in Human Computer Interaction (HCI). Research methods include interviews and observations, ethnography, grounded theory and analysis of digital traces of behavior. Readers will gain an understanding of the type of knowledge each method provides, its disciplinary roots and how each contributes to understanding users, user behavior and the context of use. The background context, clear explanations and sample exercises make this an ideal textbook for graduate students, as well as a valuable reference for researchers and practitioners. 'It is an impressive collection in terms of the level of detail and variety.' (M. Sasikumar, ACM Computing Reviews #CR144066)
This open access book offers a comprehensive and thorough introduction to almost all aspects of metalearning and automated machine learning (AutoML), covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. As one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, AutoML is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence.
Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, 2nd Edition, describes clearly and simply how crime clusters and other intelligence can be used to deploy security resources most effectively. Rather than being reactive, security agencies can anticipate and prevent crime through the appropriate application of data mining and the use of standard computer programs. Data Mining and Predictive Analysis offers a clear, practical starting point for professionals who need to use data mining in homeland security, security analysis, and operational law enforcement settings. This revised text highlights new and emerging technology, discusses the importance of analytic context for ensuring successful implementation of advanced analytics in the operational setting, and covers new analytic service delivery models that increase ease of use and access to high-end technology and analytic capabilities. The use of predictive analytics in intelligence and security analysis enables the development of meaningful, information based tactics, strategy, and policy decisions in the operational public safety and security environment.
In recent years, extensive research has been conducted by eminent mathematicians and engineers whose results and proposed problems are presented in this new volume. It is addressed to graduate students, research mathematicians, physicists, and engineers. Individual contributions are devoted to topics of approximation theory, functional equations and inequalities, fixed point theory, numerical analysis, theory of wavelets, convex analysis, topology, operator theory, differential operators, fractional integral operators, integro-differential equations, ternary algebras, super and hyper relators, variational analysis, discrete mathematics, cryptography, and a variety of applications in interdisciplinary topics. Several of these domains have a strong connection with both theories and problems of linear and nonlinear optimization. The combination of results from various domains provides the reader with a solid, state-of-the-art interdisciplinary reference to theory and problems. Some of the works provide guidelines for further research and proposals for new directions and open problems with relevant discussions. |
![]() ![]() You may like...
Big Data - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R19,115
Discovery Miles 191 150
Integrated Business Information Systems…
Klaus-Dieter Gronwald
Hardcover
R2,385
Discovery Miles 23 850
Beginning iPad Development for iPhone…
Jack Nutting, David Mark, …
Paperback
Big Data, IoT, and Machine Learning…
Rashmi Agrawal, Marcin Paprzycki, …
Paperback
R1,709
Discovery Miles 17 090
More iOS 6 Development - Further…
David Mark, Jeff Lamarche, …
Paperback
The Business of iPhone and iPad App…
Dave Wooldridge, Michael Schneider
Paperback
|